Activating JavaScript Commands From the Personal Toolbar

The personal toolbar, new in Navigator 4.0, provides simplified access to links, commands, and page location information. It is located below the menu bar in the Navigator window. Besides adding links to web pages, you can add JavaScript methods that are activated when you click on their corresponding button in the toolbar. For example, you can add a method that opens a new window. To add a JavaScript method to the personal toolbar, you need to create a bookmark and define a command for that bookmark (instead of a link).

1. In the location bar|Bookmarks > Edit Bookmarks. (opens the Bookmarks window.)

2. Open the Personal Toolbar Folder, and select the Folder. Opening and selecting the folder insures that the new bookmark appears in the Personal Toolbar.

3. Choose File > New Bookmark. This opens the Bookmark Properties dialog.

4. In the Name field, type the name you want to appear on the toolbar. For example, if you are writing a command that opens a window, you might have a name of "Open Window."

5. In the Location(URL) field, type the command using the form javascript:void (ommand). Only JavaScript methods can be used. For example, to open a window, use javascript:void(window.open("")) Using void ensures that the original page is left unchanged.

6. Click OK and close the Bookmarks window. A new button appears on the Personal Toolbar. Clicking the button activates the command.

You can author bookmarklets in the location window of your browser and then copy and paste them into your bookmarks. You may be able to get some ideas by looking at the scripts for various bookmarklets. Note that all bookmarklets use the javascript:protocol instead of the more familiar http:// protocol used for webpage URLs.

There are some tools in the Design section which are designed to help you study and write bookmarklets.

 Some tips

· Keep it short! Your bookmarklet is a little program that should preferably be no more than 255 characters in length.

· Test. Test. Test. Because of subtle differences in browser implementations, you should test your bookmarklet on as many platforms as possible. Always test both Netscape and IE on Windows and Macintosh.

· Avoid namespace collisions. Whenever possible, use long awkward variable names in order to minimize the risk of collision with other active Javascript processes. This is explained further in Ugly Variables and Encapsulation.

· Use the void. There is a void() method supported by Netscape and Explorer for use with bookmarklets. In most situations, you have to insure that returns from function calls have been voided when the bookmarklet finishes. If you don't, the last return value may get displayed in the browser window. Some things, such as alerts, don't return any value; otherwise use void().

The "javascript:" Protocol

If you've reached this site, you are probably familiar with the basic protocols, such as http: and ftp:. JavaScript-enabled browsers support the javascript:protocol, which lets you execute statements rather than loading a new document. For example, enter the following URL in your browser:

 javascript:alert("Hello World")

 Now enter a two-statement URL:

 javascript:alert("Hello World");alert("Hello Net")

 As you can see, it is possible to enter multiple statements after the preceding javascript:specification. Also note that a semicolon is not necessary after the last statement in the URL.

 Entering a javascript:URL in the browser's Location bar is almost useless. However, we can implement javascript:URLs in various browser elements. The most trivial implementation is a simple link:

 Hello World

 Simply click the following link, and an alert box will appear: Hello World. If it doesn't work, make sure JavaScript is currently enabled in your browser.

 Notice the alternation of quotes. Since the HREF attribute requires quotes, we must make sure the internal javascript:URL doesn't use the same type of quotes. In the preceding example, we use double quotes for the HTML attribute, and single quotes for the JavaScript statement.

 The JavaScript statement used in a javascript:URL should not return any value. For example, the alert() method doesn't return a value; in other words, it returns undefined. If the statement returns undefined, the browser simply executes it. However, if it returns an explicit value, the browser loads a new page, with the javascript:URL in the Location bar, and the returned value in the body of the page.

 When taking advantage of the javascript:protocol, we must make sure the statement doesn't return any value. Therefore, we need to apply the void operator if the statement returns an actual value. Here's an example:

 The void operator evaluates its expression, and returns undefined. The parentheses surrounding the expression are optional, but they are important when writing compact, one-line scripts. If you're not sure if a statement returns a value, use the void operator to stay on the safe side.

 When inserting several statements in a single javascript:URL, all value-returning statements require a void operator. Take a look at the following example:

 Note that the entire javascript:URL should be as compact as possible. Long javascript:URLs tend to generate errors or crash the browser. We suggest that you stick to a maximum of about 500 characters.

Creating Bookmarklets

 As you already know, any hypertext link can be used in the form of a bookmark. The same rule applies to javascript:links, so you can actually create a bookmark that executes JavaScript code -- a bookmarklet. The following link displays an alert box and loads a Web page: Doc JavaScript.

 If you're running Windows, right-click the link and select "Add Bookmark" (Navigator) or "Add to Favorites..." (IE). If you're working on a Macintosh, hold the mouse button over the link until the menu appears, and create a bookmark. Due to a bug in the Macintosh version of Navigator, the bookmark's name may not show up properly. Rather than using the link's text as the name of the bookmark, the browser uses the URL for some

 reason. The specific bookmark can be edited by pressing Option+B (Bookmarks), selecting the desired bookmark, and then pressing Option+I (Get Info).

 There are other ways to create bookmarks. In Navigator, open the Bookmarks window, and select the "New Bookmark..." option from the File menu. Then enter the desired name and URL for the bookmark. In IE you will need to do some hacking. Locate the Favorites folder, and create a new file for the desired bookmark. We suggest that you stick to the standard "Add Bookmark" or "Add to Favorites..." option.

 Executing JavaScript from a bookmark is great, but running a script from a permanent button is even better. By dragging a javascript:link to Navigator's Personal Toolbar or IE's Links bar, you can present a JavaScript-powered button in your browser. You can add a button to Navigator's Personal Toolbar by creating a bookmark in its folder. For more information, refer to Netscape's JavaScript Guide.

 Note that the Macintosh version of Navigator 4.5 features a Personal Toolbar, but previous versions do not. You should also know that the Links bar in the Macintosh version of IE 4.0x causes some trouble, so you may find it difficult to use.

 When you trigger a bookmarklet, you are actually running a script on the current page. Therefore, you cannot use a bookmarklet to access properties of a document in another window, belonging to a different site. These are simply security precautions that are typical to JavaScript.

The Bookmarklet Builder

 Writing a bookmarklet is a bit frustrating. First, you need to create a temporary page with the desired javascript:link, so you can create a bookmark for that link. Furthermore, you can only use one type of quotes, due to quote alternation.

 In order to make the process easier, we created a handy utility that assists you in the process of creating bookmarklets. We won't discuss the script that powers the Bookmarklet Builder, because it's beyond the scope of this column. We'll just show you how to take advantage of it. Before we start, load the Bookmarklet Builder.

 We suggest that you create a bookmarklet for the Bookmarklet Builder, by making a bookmark for the preceding link.

 Now take a look at the Bookmarklet Builder. Enter the desired one-line javascript:URL in the first field, and the name of the bookmarklet in the second one. Then hit the Update button and notice the new link. Simply create a bookmark out of that link, and your bookmarklet is ready. Note that you will need a fourth generation browser for the Bookmarklet Builder, because it utilizes Dynamic HTML.

 We created the Bookmarklet Builder in a special way that enables you to use both single and double quotes freely, as you would in any normal script. You don't need to worry about the quotes in the link's HREF attribute.

Bookmarklets and Frames

 When you run a script from a bookmark, via a bookmarklet, you are actually entering a javascript:URL in the browser's Location bar (IE calls it an Address bar). If the current Web page in the browser's window consists of several frames, the script is executed as part of the parent window. For example, if you have a bookmarklet that counts the number of links on the current page, it will not work with a frame-based page.

 If a javascript:URL appears in a link, it can refer to a specific frame if the link is located within that frame. However, if you then create a bookmarklet out of that link, you must remember that the bookmarklet executes at the topmost level of the page.

 If you pay a visit to bookmarklets.com, you will notice that only some of the scripts are compatible with frame-based documents. They won't generate errors on such pages, but they won't do their job. Generally speaking, bookmarklets that deal with the content of the page will not work with frames, while those that deal with the current location or the browser's window will work flawlessly.

Search Engine Bookmarklets

 Search engine bookmarklets enable you to query a search engine without having to load the engine's home page.

 When you execute such a bookmarklet, a prompt box asks you for the desired keywords, and the search engine's results are immediately retrieved. You don't have to load the search engine's home page. If you're using a fourth-generation browser, go ahead and follow one of these links (be sure to come back after you've been impressed):

 Altavista

 Excite

 Infoseek

 Lycos

<A HREF='javascript:void(str=prompt("Search for:",""));if(str){location.href="http:

//www.altavista.com/cgi-bin/query?pg=q&kl=XX&q="+escape(str).

split("%20").join("+");}'>Altavista

<A HREF='javascript:void(str=prompt("Search for:",""));if(str){location.href="http://

search.excite.com/search.gw?search="+escape(str).split("%20").join("+");}'>Excite

<A HREF='javascript:void(str=prompt("Search for:",""));if(str){location.href="http://

infoseek.go.com/Titles?qt="+escape(str).split("%20").join("+")+"&col=WW&sv=IS&lk=noframes";}'>Infoseek

<A HREF='javascript:void(str=prompt("Search for:",""));if(str){location.href="http://

www.lycos.com/cgi-bin/pursuit?matchmode=and&cat=lycos&query="+escape(str).

split("%20").join("+");}'>Lycos

 First, we ask the user for input via the prompt() method. The input is stored in a variable named str, but the statement itself doesn't evaluate to the value of str thanks to the void operator. The second argument of the prompt() method, an empty string, specifies that the prompt box should initially be empty. If the user entered a value in the prompt box, we load the search engine's result page, along with the user's input.

 If you search Altavista for the words "Tomer Shiran," the URL of the result page is:

 http://www.altavista.com/cgi-bin/query?pg=q&kl=XX&q=Tomer+Shiran

 But since we want to use the user's keywords, we need to replace the string Tomer+Shiran with the user's input:

 escape(str).split("%20").join("+")

 We use one built-in function, escape(), and two built-in methods, split() and join(), to encode the user's input. The escape() function encodes special characters in the specified string and returns the new string. It encodes spaces, punctuation, and any other character that is not an ASCII alphanumeric character, with the exception of these characters: * @ - _ + . /. These characters are replaced with %xx encoding, where xx is equivalent to the hexadecimal number representing the character. For example, a space is converted to %20.

 The URL of the search engine's result page is encoded in the same way, with one exception: spaces are converted to + characters. The combination of split() and join() is used to replace all appearances of %20 with + in the encoded string.

 Now that you know how these bookmarklets work, be sure to pick them up and add them to your browser as fresh new bookmarklets.

Doc JavaScript's Ad Bookmarklet

 Before we sum up this column, we would like to introduce a fun bookmarklet. Wherever you are, just execute it and the advertising banners on the page will be replaced with our own banner.

 Go ahead and give it a try: Doc JavaScript Ads. Click the link to make it work on this page, or drag it to your Personal Toolbar (Navigator) or Links bar (IE) for easy access wherever you are. Now let's take a look at the script behind the scenes:

<A HREF='javascript:void(imgs=document.images);for(i=0;i<imgs.length;i++)

{if((imgs[i].width==468)&&(imgs[i].height==60))void(imgs[i].src="http://www.webreference.com/js/docjsad.gif");}'>Doc JavaScript Ads

 First, notice the use of the void operator on statements that return explicit values (assignment statements, in our case). We assign the document.images array to a variable named imgs, and loops through all its elements. For each image, we check if its dimensions are 468x60 -- typical ad banner dimensions. If the condition evaluates to true, we change the source of the image (its src property) to htp://www.webreference.com/ s/docjsad.gif, the URL of Doc JavaScript's banner.

 Unlike our search engine bookmarklets, this bookmarklet doesn't affect frame-based Web pages, because images in such pages are included in the frames, and are not integrated in the parent window. Therefore, running a script in the parent window's Location bar (or Address bar, in IE) does not influence the inner frames, because the specified document object belongs to the parent's window object. Bear in mind that the term "bookmarklet" refers to javascript:bookmarks, not just ordinary javascript:links.

