ASP Overview - Introduction
http://www2.ewebcity.com/home/codelib/aspoverview/aspoverview.asp
 Welcome to Active Server Pages (ASP). Here is where you will find an overview of the language and some of its' basic features. The overview is comprised of the following sections: introduction, main objects, and wrap up.

Introduction

 ASP is an Internet framework that you can use to make your web pages dynamic. The most popular use of ASP is in conjunction with databases. ASP can be used to write applications that access small databases like MS Access or large enterprise databases like SQL Server or Oracle. The most popular and most widely used language to write ASP in is VBScript. VBScript is a scaled down version of Visual Basic. If you know VB a lot of the code will look very familiar. If not, don't worry, given some time you will pick it up.

 Since ASP is written using a scripting language it is therefore interpreted code. This means that you do not compile it before you run it. You write the code and then when it is accessed through a web browser on a server, the server interprets the code and sends HTML back to the browser to display. This makes ASP a browser independent solution. This is also the reason that you do not see any ASP code when you do a view source on an ASP web page.

 The way that you write an ASP page is to open a text editor, like notepad, write some ASP code in it, and save it as a .asp file. Remeber that all ASP code needs to be placed inside <% and %>. If you do not do this all the code will get printed out as if it were text. At this point the file needs to be placed on a server that supports ASP. After the file is uploaded or moved to a directory on a web server, you can then access it with a web browser to see the result.

 The way that ASP works is you call the object you want with a dot after it followed by the method you want to invoke. Then you can pass in any parameters you want to the method. Here is an example:

object.method "parameter1","parameter2"

OR

Response.Write("Print this out...")

 Enough with the introduction let's dive in to the language.

ASP's 5 Main Objects (Response, Request, Application, Session, Server)

Response Object
 The Response Object is used to send information to the browser to display, redirect the browser to a different URL, and send cookies to the browser.

An example use of the Response Object is to print out a line to show in the browser:
Response.Write("Hello World.
")

This will print out to the browser window "Hello World." -- without the quotes. Also notice the html break tag, you can write html tags in to these write statements.

Request Object
 The Request Object is used to get information submitted from an html form or on the querystring, get information stored in a cookie, and to get environment variables.

An example use of the Request Object is to request a value that was submitted from an html form. The name of the variable comes from the html input device.
<input type=text name=myvar>

Now we will get the value of the html form variable "myvar" (assuming that the form has been submitted).
formvar = Request.Form("myvar")

In the above code we set the value of formvar equal to the value of the form variable. We can then use the new variable (formvar) to do something (insert in to a database, print out a message, etc).

Application Object
 The Application Object is used to store information once that can shared across all the users of the application simultaneously. An example of this use is database logins, common directories, and short bits of information that are common to all users.

An example use of the Application Object is to store a web address that is commonly used throughout the web application. For example, if you were developing an application and several times in your application you needed to code in the web address to send users back to your home or main page. When developing this application the address might be one thing, and when the application is moved from the development to the production environment the main page web address will likely change. The best way to do this would be to store this bit of information in an Application variable that is set in one place and called in several. This way when it needs to be changed, it is changed in one place and not the dozens of places where you called it.

Here is an example of how to set an Application variable:
Application("myvar") = "http://www.mywebsite.com/dev/index.htm"

In the above code we set an Application variable that can later be called by simply printing it out where we need it like so:
<a href="<%=Application("myvar")%>">Home Page

The = sign is a shortcut to Response.Write and can only be used when you supply the <% and %> around it. The code above prints our the value of the Application variable in the a href spot so that when you click on "Home Page" it takes you to wherever the Application variable specifies.

Session Object
 The Session Object is used to maintain state across web applications. What this means is that regular html pages are requested by the browser and then sent. The connection between the server and the browser is connected and disconnected each time a request is made. To combat this ASP has the Session Object. This object allows you to set Session variables that can be used from page to page within your application.
*Remember, there is one Application Object for all users, but each user has their own Session Object that is unique to them.

An example use of the Session Object is to set a Session variable equal to whether or not the current user is logged in. To do this we would first check the Session variable to see if the requesting user is logged in. If they are logged in we would send them to a specific page, if not then we would send them to the login page. At the login page, the user would type in their name and password, the script would check it for accuracy and then if it was correct set a Session variable stating that they have successfully logged in. The setting of the Session variable is show in the example below:
Session("loggedin") = "yes"

In the above code we set the "loggedin" Session variable equal to yes. This way if the user requests another page that requires them to be logged in, we simply check the Session variable to see if it equals "yes".

Server Object
 The Server Object is used to do several basic tasks: set the maximum amount of time a script can run before it times out, take a string and either HTML or URL encode it, convert a virtual web address in to an absolute path on the server, and to create an instance of COM components to use in your ASP scripts.

An example use of this object is to create an instance of the ADODB.Connection object that is used to establish a connection to a database.
Set Conn = Server.CreateObject("ADODB.Connection")

In the above code we set "Conn" equal to the instance of the ADODB.Connection object. From here we would call the Open method of this object and pass in the appropriate parameters (data source name, user id, password, etc) to open a connection to a database.

ASP Overview - Wrap Up

 ASP is a flexible framework that will allow you to make your web pages incredibly dynamic. Code examples are plentiful in the code library or check out the recommended books section for reference or learning books.

 You can also sign up for a free membership at eWebCity and have plenty of space to practice any new knowledge that you have learned about ASP.
Building Documents with XML, XSL, and CSS
http://www.siteexperts.com/tips/xml/ts01/page1.asp By Scott Isaacs

The current set of web recommendations and proposed recommendations is starting to look a lot like alphabet soup. Web designers currently have to deal with XML, XSL, CSS, HTML, and the DOM. In this article, we demonstrate how these technologies are very complementary and will change the future of building web-sites.

Many months ago we ran a series of articles explaining our back-end template system. The user-interface for every page on SiteExperts.com is created by a set of include files around the actual content. Depending on the change, our approach makes it relatively easy for us to quickly update the user-interface. For example, we can add a new choice to our navigation menu, move the banner ad around, or change the color scheme of the page by changing one file. However, if we want to manipulate and highlight information in an article (eg., create pull-quotes) we need to go and update the content directly.

With the introduction of XML and XSL we are starting to explore a richer and more powerful solution to managing the site and our content. To prove this, we decided to author this article completely in XML (demonstration for IE5 user's later), use XSL to transform the document to HTML, and use CSS to add additional formatting to create the final page.

This approach provides us with a number of benefits:

1. We can bring authors on we can give them a detailed set of XML elements for writing their articles. This enforces a more rigid authoring scheme making it easier for us to process the articles.

2. We are no longer tied to our templating system. Our templating system required each article to be adorned with extra template and semantic information. With XML we can sep

arate the article from the template description.

3. By transforming the XML using XSL to HTML, we can quickly change any aspect of the page. You can create multiple views of the same document quickly and efficiently all without modifying the original page.

4. Last, using CSS, we can apply simple styling to the created HTML. This is important as simple rendering changes can be made to your document without requiring the overall XSL template to be modified or the page to be regenerated.

We are now going to take you on a tour through our use of XML, XSL, HTML, and CSS. While we will introduce many XML and XSL topics, this article is not intended as a complete tutorial to using those technologies. Rather, we hope to clearly demonstrate in detail how these technologies complement each other, their ease of use, and to leave you with some ideas on how to apply these technologies. We will write more detailed tutorials in the future.

Building Smart Pages with ASP, XML and XSL
By Scott Isaacs

	Two weeks ago we introduced how XML, XSL, and CSS all complement each other and will change how you build your future web-sites. If you are new to XML and XSL we recommend you read our first article before continuing. The original article explains the XML schema we used and provides an introduction to XSL transformations.

In our introductory article, we explained how XML and XSL can be used to create documents that target different browsers or mediums (eg., phones or TVs). However, we did not provide a real-world demonstration. Instead, we introduced XML and using XSL to transform the document into HTML for viewing and demonstrated how to perform this transformation on the client in IE5.

We will now go the next step and demonstrate a XML and XSL solution that runs on all browsers. Depending upon the browser, we wiill either perform the transformation on the server or send the raw XML and XSL for processing on the client. With this approach, we can author our document once and provide custom presentations targeted for specific types of clients. In this article, we will demonstrate 3 different presentations. Which one you receive depends on your browser. You will either receive

· the raw XML and XSL version (IE5),

· an IE4 version,

· or an HTML 3.2 version.

To manage the processing, we wrote an ASP page that manipulates the Microsoft XML and XSL parsers.

The ASP Script
Our ASP page checks the browser you are using and delivers the appropriate. If you are not running IE5.0 we open the XML document, apply the XSL transformation, and send the resulting HTML to the client. In IE5.0 we send the XML and XSL files directly to the client for processing.

Creating this logic is very easy. The first step is to make sure you have the Microsoft XML and XSL parsers installed on your server. If you are running IE5.0 on your server these parsers are already installed. If not, you need to download and install them from Microsoft's XML site.

Next you need to author the server-side script. The server script first determines the client's browser. This can either be accomplished using the IIS Browser Capabilities object or by analyzing the HTTP header directly. We do our browser detection by analyzing the header directly:
Dim sAgent,b_IE,b_Vers,b_Mac,b_Nav,b_Other

Dim ie4win,b_win,ie4,ie3,ie4mac,ns4

b_IE=false

b_Nav=false

b_Other = false

b_Vers = 0

sAgent = Request.ServerVariables("HTTP_USER_AGENT")

if (inStr(sAgent,"MSIE")>0) then

 b_IE=true

 b_Vers = Mid(sAgent,inStr(sAgent,"MSIE")+5,1)

elseif (inStr(sAgent,"MSPIE")>0) then

 b_Vers = Mid(sAgent,inStr(sAgent,"MSPIE")+9,1)

else

 b_Vers = Mid(sAgent,9,1)

end if

if (not (b_IE)) then

 b_Nav=inStr(sAgent,"Mozilla")>0 or inStr(sAgent,"compatible")>0

end if

b_Win = (instr(sAgent,"Win")) > 0 'Windows

b_Mac = (instr(sAgent,"Mac")) > 0 'Mac

b_Other = not (b_Win or b_Mac) 'Other

ie4 = b_IE and b_Vers>=4 ' IE4

ie5 = b_IE and b_Vers>=5 ' IE5

ie3 = b_IE and b_Vers<4 ' Everything <IE4 we consider IE3

ie4Mac = b_Mac and ie4 ' IE4 Mac

ns4 = b_Vers>=4 and b_Nav ' NS4

ie4Win = b_Win and ie4 and not b_mac ' IE4 Windows

The next step is to write your script that uses the browser version to return the correct document. If you are running IE5, we send the XML document directly to the client, otherwise we generate the HTML on the server:
if ie5 then

 ' Send the XML File

 response.write(OutputDocument("simple.xml"))

elseif (ie4) then

 ' Transform with simple.xsl to HTML + CSS

 response.write(TransformDocument("simple.xml","simple.xsl"))

else

 ' Transform with simpleHTML.xsl to HTML 3.2

 response.write(TransformDocument("simple.xml","simpleHTML.xsl"))

end if

At this point, we recommend you view our simple demo page. This is the same XML demonstration page from our first article. However, now it is viewable by all browsers. You should view the demo page and source in both IE4.0 or later and Netscape Navigator. You will notice the HTML is different depending upon your browser, and in the case of IE5, you are viewing the XML file directly. While the file appears different on the client, the presentations were created from the same source XML document (all the files are available for download at the end of this article). Since the presentation is separate from the source article, we only need to update one file to change the original article. We can also tweak the layout of all articles just by changing the appropriate XSL style sheet.

The next step is to explain how we perform the transformations on the server by explaining TransformDocument and OutputDocument functions.

Applying XSL on the Server
The builk of the hard work in our ASP script is handled by the TransformDocument and OutputDocument functions. We are going to start with the simpler OutputDocument function. Given an XML file, this function sets the document type to "text/xml" so the client knows it is receiving XML, opens the document, and finally sends it to the client.
function outputDocument(sFile)

 Dim defaultPath,objFSO, objFile

 Set objFSO = CreateObject("Scripting.FileSystemObject")

 if objFSO.FileExists(server.mapPath(".") + "/" + sFile) Then

 response.contentType="text/xml"

 Set objFile = objFSO.OpenTextFile(server.mapPath(".") + "/" + sFile)

 outputDocument = objFile.readAll

 objFile.close

 else

 outputDocument = "XML File is Missing"

 end if

end function

An alternative to manually retrieving the file is to redirect the user to the XML file. We chose not to redirect so to keep a single URL. When you redirect, you are actually returning a code that tells the client to request a different page. This requires an additional round-trip and also exposes an alternative URL to the user which would only be valid in IE5.0 (or XML/ XSL enabled browsers).

The next function is the TransformDocument function. This function performs the same work IE5 provides but on the server. This function takes an XML and XSL file name. The XML and XSL file are loaded in memory on the server and then the XSL file is applied to the HTML to transform it into HTML. The generated HTML is then returned to the client. In this case, the client has no knowledge that your pages originated in XML.
function TransformDocument(srcXML, srcXSL)

 Dim sourceFile, styleFile, source

 sourceFile = Server.MapPath(srcXML)

 styleFile = Server.MapPath(srcXSL)

 ' Load the XML

 set source = Server.CreateObject("Microsoft.XMLDOM")

 source.async = false

 source.load sourceFile

 ' Load the XSL

 set style = Server.CreateObject("Microsoft.XMLDOM")

 style.async = false

 style.load styleFile

 if (source.parseError.errorCode <> 0) then

 result = reportParseError(source.parseError)

 elseif (style.parseError.errorCode <> 0) then

 result = reportParseError(style.parseError)

 else

 on error resume next

 result = source.transformNode(style)

 if (err.number<>0) then

 result = reportRuntimeError(exception)

 end if

 end if

 TransformDocument = result

End Function

If an error occurs, we call the reportParseError or reportRunTimeError functions. Since these are fairly simple functions that just output the error, we do not cover them here (you can view them by downloading the sample files).

Before running off and deploying this, if you have a heavily trafficked site, you should be aware of the following performance consideration: This solution does all the transformations immediately upon request. Since the document's and transformations do not dynamically change, a better approach is to build a document management system that performs and caches all the transformations on your server. This avoids the cost of having to load, parse, and transform the document on every request.

In our next article in this series, we are going to extend our demonstration with additional interactivy. You will see how to provide an article summary and the detailed article from the same URL and same XML document by applying different transformations.

XML Tips for HTML Authors
Before we explore XML and XSL we are going to provide a few authoring tips for HTML authors learning XML. Compared to HTML where basically anything goes, XML has strict rules. With XML, your document must be properly structured or you will get an error when it is read. We are going to quickly explore a few of the more common mistakes made when authoring XML.

1. XML requires your document is well-formed.
This means that you cannot create tags that overlap one another. For example, the following is well-formed. Notice how all the tags are properly contained within other tags:

This is

<i>bold and italic</i>

<i>

and this is just italic

</i>

While valid HTML has the same requirement, HTML does accept overlapping tags. While rewriting the above example with overlapping tags will usually render as expected in most HTML browsers, it actually creates invalid XML:

This is

<i>bold and italic

and this is just italic

</i>

2. XML is case-sensitve.
If you start a tag in lowercase, you must close the tag in lower-case. For example, while the following is valid HTML, it is invalid XML: <i>...</I>. We choose to define our XML tags entirely in lower-case.

3. Empty tags must be specified as empty.
An empty tag is a tag that does not have a close tag (eg., </i>). For example, the IMG, INPUT, BR are empty tags. HTML knows they are empty tags because it is built-into the HTML engine. Since XML may contain arbitrary tags that may not be tested against a DTD (the description of the document) the tags must self-document whether they are containers or not. If you create an empty element in XML, you must provide a "/" at when the tag ends. For example, if you defined an empty IMG tag in XML, you would define it as follows:

4.

In the same regard, all container tags must be closed. For example, in HTML you can create paragraphs simply by specifying <P> tags sequentially without closing the paragraph with a end </P> tag. In XML this would be invalid as it would cause your document to be malformed (in XML, the P's have no context and without the end P tag would be assumed to be contained within one another).

5. All attribute values in XML must be specified in quotes.
HTML is fairly flexible in allowing you to omit quotes when specifying attribute values (eg., <TABLE BORDER=0>). In XML, always remember your quotes, <table border="1">.

This briefly introduces a few of the differences between HTML and XML and should give you enough background to proceed through the rest of this article. Next we look at the XML elements we defined to author our article.

Our XML Article Format
For this article, we created a simple XML-schema to demonstrate a simple article format. Looking at most of our articles, they consist of a title, a set of keywords, the author's name, and a list of chapters each with its own title.

In our XML schema we expose the document in two parts. If you are familiar with HTML, authoring XML is very simple. Instead of using HTML's built-in tags, you will be using tags specific to your purpose. We are going to explore our simple article format. The article contains a single header section stored in a meta block following by n-number of chapters representing each page of the article:

<?xml version="1.0"?>

<?xml:stylesheet type="text/xsl" href="simple.xsl" ?>

<article>

<meta>

... Title, keywords, author, ...

</meta>

<chapter>

<title>...title...</title>

<body>...chapter body...</body>

</chapter>

<chapter>

<title>...title2...</title>

<body>...chapter body2...</body>

</chapter>

</article>

Looking closer at our meta section, we defined 5 elements - a title element, an author element, a date element, and a keyword element. You are limited to one of each element except for keyword which can be specified multiple times to define multiple keywords. For example:

<meta>

<title>Sample Article Template</title>

<abstract>We explore using XML and XSL to create a simple article template.</abstract>

<author email="scotti@SiteExperts.com">Scott Isaacs</author>

<date>6/12/1999</date>

<keyword>XML</keyword>

<keyword>XSL</keyword>

</meta>

Each chapter contains two sections, a title and a body section. Inside the body section we expose a very simple set of tags for creating your content. You can create either <p>aragraphs or <code> blocks. Within each paragraph you can mark text that you want used in pullquotes. For example:

<chapter>

<title>Introduction</title>

<p>You can create

<pullquote>templates with XML and XSL<pullquote>

For example:

</p>

<code>

...put code here...

</code>

</chapter>

Typically you would use a DTD to describe the elements in the document. However, for simplicity purposes we are leaving the discussion of DTDs for a future article. The DTD would be used to define the valid elements and attributes, the ordering of the elements, whether the element is required, and whether the element can be repeated (eg., one title versus multiple keywords).

Different from HTML, a document authored using XML has no default presentation. We are now going to explain why XSL is a powerful and necessary tool when building an XML-based site.

Presenting the XML
You have seen how you can author a simple document in XML. By itself the document has no real presentation. To add presentation to your XML document you can either define a style sheet using CSS or transform the document into a new document using XSL. We have chosen to use XSL to transform the document over using just CSS for a couple of reasons.

We are not using CSS as it does not allow processing or manipulation of the page. CSS essentially provides control over rendering of an already structured document. We want our presentation to specify the keywords within an HTML meta tag, a table of contents with links to each section, and pull-quotes where certain content is duplicated in the margin. All of these are currently well-beyond the capabilities of CSS. All of these manipulate content outside of the document's XML structure.

More importantly, XML by itself is a raw format. We are using XSL as a way of separating the ultimate presentation of the document from the raw file. By doing so, we can start solving the multiple presentation issues that will face us in the future. Today, web authors gripe about how to properly present documents to be displayed on different browsers. The focus is currently on incompatibilities that exist between the browser. In the future, even if we all have completely standards-based and compatible browsers, this problem will not go away. It will have simply evolved into a cross-medium issue rather than a cross-browser issue. I can assure you that the way you view a document on your computer will be different from the view you want to see on your PDA, phone, and even the television (many colors bleed badly on TV). How are you going to solve this? XSL is key in that you can create different transformations for different mediums.

Now imagine that each browser you want to target is a different medium. You can create transformations of your document that generate an HTML 3.2 version, a HTML 4.0 with CSS version (with maybe a Netscape specific and IE specific version), and possibly a version formatted for a target audience (eg., color blind, etc.). The number of mediums you want to target is entirely up to you and limited only by your ability to generate new XSL templates, rather than multiple instances of your content. Furthermore, since the template is separated completely from your content, updating the content automatically updates every medium's view of the content.

This is a future goal of SiteExperts.com. We want to rebuild our backend document management system to intelligently transform documents based on the medium. This will make our system much more flexible and maintainable. We will be able to change the entire site's look at feel completely independent from the articles as well as change the processing of the actual content and have it automatically managed by the system.

Next we are going to look at how we used XSL to transform our document for viewing on IE5.0. The demonstrations are limited to IE5 as we use IE5 to process and render the XML and XSL files. In a future article we will explore server-based techniques for providing multiple views on a single document for viewing on different mediums and browsers. By moving processing to the server, the client viewer does not need to know nor does it care that the backend data is in XML.

Transforming with XSL
For our article, we define the XSL file to associate with our article as a processing instruction within the XML prolog:

<?xml version="1.0"?>

<?xml:stylesheet type="text/xsl" href="simple.xsl" ?>

When the article is downloaded this processing instruction is read causing the simple.xsl file to also be downloaded. Simple.xsl defines how the current document should be transformed. This approach ties together a specific XSL transformation with the document. Another approach is to dynamically bind the article with a particular XSL sheet. This can easily be done through script that loads both the XML and XSL and does the appropriate transformation. We will cover such manipulations in a future article.

XSL is an application of XML and therefore lives by XML's rules. XSL declaratively defines how to transform an XML document into another XML document. To display the document, you create your HTML document as an XML document that follows the XML rules (eg., case-sensitive tag name, closing the empty tags, etc.). The XSL is specified in your document by including the XSL namespace in the document.

A namespace is used to specify the context for the element's meaning. For example, the HTML tag is used to define a list item. However, LI in another namespace may have a different meaning. When creating an XSL sheet, you need to use the XSL namespace. Looking at simple.xls you will see that we specify the XSL namespace. This namespace is defined by the schema from the W3C web-site:

<?xml version="1.0"?>

<HTML xmlns:xsl="http://www.w3.org/TR/WD-xsl">

...

</HTML>

The XSL is interpreted by evaluating the XSL in the page and generating a new document. We use the XSL to generate an HTML document. The new document is created by interpreting and evaluating all the XSL elements in the document. For example, in our article, we define the article's title using the title element that is specified within a meta element within the article element:

<article>

 <meta>

 <title>Sample Article Template</title>

 </meta>

</article>

When we generate the HTML page we want this title specified as the document's title. We accomplish this by extracting the value of the title element using the XSL value-of element. This element takes a path to an element and returns the requested value. The path is determined by the element's containership. The path to the title in our xml article format is: article/meta/title. Therefore to transform the article title from XML to the HTML counterpart, we write the following XSL:

<HEAD>

 <TITLE>

 <xsl:value-of select="article/meta/title"/>

 </TITLE>

</HEAD>

This generates the HTML:

<HEAD>

 <TITLE>Sample Article Template</TITLE>

</HEAD>

Notice that all the elements in the HTML name-space are included in the new document. The elements from the XSL namespace are evaluated and returned by the XSL interpreter.

You have seen a very simple one-to-one mapping transformation of an XML element. A more common operation is to iterate over an indeterminate number of elements. This is accomplished using the XSL for-each element. This element is used to loop over the contents. We are going to use the for-each element to generate an HTML meta element to hold the document's keywords.

The keywords for the article are specified using the keyword element. Any number of keyword elements can be specified:

<article>

 <meta>

 <title>Sample Article Template</title>

 <keyword>XML</keyword>

 <keyword>XSL</keyword>

 </meta>

</article>

These keywords need to be transformed into the following HTML element:

<META NAME="keywords" VALUE="XML, XSL"/>

This transformation is different from our TITLE transformation in three ways: 1) We need to enumerate all the keywords, 2) We need to assign the contents of the KEYWORD elements to an attribute value, 3) The META element is an empty element (notice we specified the closing "/")

To assign an attribute value you use the xsl attribute element. For example, you can set the NAME attribute of the meta tag as follows:

DOUBLECHECK

<META/>

<xsl:attribute name="NAME">keywords</xsl:attribute>

The above is merely a demonstration. Since we are outputting a literal string a more effective approach is to set the NAME attribute directly on the META element. A more practical example is to combine the attribute, for-each, and value-of attributes to generate the value attribute:

<META NAME="keywords"/>

<xsl:attribute name="value">

 <xsl:for-each select="article/meta/keyword">

 <xsl:value-of/>,

 </xsl:for-each>

</xsl:attribute>

Let's examine this XSL. We first generate the META tag with NAME="keywords". Next, we manipulate the META tag's value attribute. Since we want the value to be the concatenation of all the keyword values, we create a loop that enumerates all the keyword elements. We can use the value-of element by itself to output each keyword since the keyword element is already selected. Also, notice that we include a literal "," after each value. This XSL generates the following HTML:

<META NAME="keywords" VALUE="XML, XSL, "/>

Notice the trailing "," after the last keyword. We can eliminate this extra comma by using the XSL if element to test if we are at the last keyword element. The if element takes a test attribute which is used to create a conditional statement:

<META NAME="keywords"/>

<xsl:attribute name="value">

 <xsl:for-each select="article/meta/keyword">

 <xsl:value-of/>

 <xsl:if test="context()[not(end())]">, </xsl:if>

 </xsl:for-each>

</xsl:attribute>

The if element is testing whether the current element is the last element in the loop. If not the last element, we output the comma. XSL provides a complete syntax for matching and testing elements.

That almost concludes the generation of the head section of our HTML document. The last step is to include the LINK element that associates the CSS Stylesheet with the final document. As we will demonstrate, we use CSS to specify the rendering of the generated HTML. This allows us to change the rendering of the elements separately from the generation of the HTML document. Below we show you the complete XSL script for generating our document:

<HEAD>

 <TITLE>

 <xsl:value-of select="article/meta/title"/>

 </TITLE>

 <META NAME="keywords"/>

 <xsl:attribute name="value">

 <xsl:for-each select="article/meta/keyword">

 <xsl:value-of/>

 <xsl:if test="context()[not(end())]">, </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <LINK REL="stylesheet" TYPE="text/css" HREF="article.css"/>

</HEAD>

Next we explain how we generated the article's body content including an author mail-to link and the article's table of contents.

Transforming with XSL II
We are now going to explore how we generate the content portion of the document. We are first going to explore how to extract an attribute from an XML element. So far you have only seen how the contents of an element can be retrieved and displayed in your document. If you look at the XML article, you will notice that we specify the author's e-mail address as an attribute on the author element:

<author email="scotti@SiteExperts.com">Scott Isaacs</author>

When we output the author's name, we want to create a mailto link out of this e-mail address. Extracting attribute values is very similar to extracting the contents of an element. You define the path to the attribute, where the attribute is specified using the "@" operator. Now we create our mailto link extracting the e-mail address and the author's name as follows:

<A>

 <xsl:attribute name="href">mailto:

 <xsl:value-of select="article/meta/author/@email"/>

 </xsl:attribute>

 <xsl:value-of select="article/meta/author"/>

That was pretty straightforward. Now we are ready to explore the most complicated piece of our XSL template - generating a live table of contents. The table of contents creates an interesting challenge. We need to dynamically generate the table of contents with links to the live sections. To create the link, we are going to retrieve the index of each chapter using the XSL eval element. The eval element executes and returns the result of script. Let's look at the table of contents generation:

<H2>Table of Contents</H2>

<OL ID="toc">

 <xsl:for-each select="article/chapter">

 <A>

 <xsl:attribute name="HREF">#H

 <xsl:eval>

 formatIndex(childNumber(this),"1")

 </xsl:eval>

 </xsl:attribute>

 <xsl:value-of select="title"/>

 </xsl:for-each>

The table of contents demonstrates almost every technique in this article. First, we output the static table of contents header and the opening of our ordered list. Next, we enumerate all the chapters in the article. At each chapter, we create a link formatted as "#Hn" where n is the chapter number. The contents of each link is the chapter title.

We are now ready to output the contents of the article. Since the article consists of chapters, we are going to enumerate over each chapter and then over each element within the chapter's body. Within the chapter body there can be either a code or p element. For code elements we wrap the contents in a PRE element, and for p element we wrap the contents in an HTML p element. To distinguish between these two elements we apply an XSL template. Each element is matched and applied against the template. We also use templates to match the contents of each paragraph. Within a paragraph there can be pullquotes.

Below is the complete XSL template for transforming the chapter body. Notice how every XSL element can also be nested to provide more context to your transformation.

<xsl:for-each select="article/chapter">

 <A>

 <xsl:attribute name="NAME">H

 <xsl:eval>

 formatIndex(childNumber(this),"1")

 </xsl:eval>

 </xsl:attribute>

 <H3>

 <xsl:eval>

 formatIndex(childNumber(this),"1")

 </xsl:eval>.

 <xsl:value-of select="title"/>

 </H3>

 <DIV>

 <xsl:for-each select="body">

 <xsl:apply-templates>

 <xsl:template match="code">

 <PRE><xsl:value-of/></PRE>

 </xsl:template>

 <xsl:template match="p">

 <p>

 <xsl:if test="context()[0]">

 <xsl:attribute name="CLASS">START</xsl:attribute>

 </xsl:if>

 <xsl:apply-templates>

 <xsl:template match="pullquote">

 ...<xsl:value-of/>

 <xsl:value-of/>

 </xsl:template>

 <xsl:template match="text()"><xsl:value-of/></xsl:template>

 </xsl:apply-templates>

 </p>

 </xsl:template>

 </xsl:apply-templates>

 </xsl:for-each>

 </DIV>

</xsl:for-each>

The last step is to look at our CSS style sheet. This style sheet is applied to the resulting HTML document. (Remember, in our head section we output a LINK to an external style sheet.) This style sheet allows us to update appearance of the document without needing to update the transformation.

For our article, we created a fairly simple stylesheet:

BODY {font-family: arial, geneva}

#about {text-align: center;font-weight: bolder}

#author {font-size: 110%}

#abstract {margin-left: 3em; margin-right: 3em}

#article {border-top: 1px gray solid}

.pullquote {float: right; font-weight: bold;

 border: 1px lightgrey solid; width: 10em; clear: both}

P {text-indent: 2em;margin-top:0pt;margin-bottom: 0pt;font-size: 10pt}

P.start {text-indent: 0pt}

H1 {color: navy; text-align: center; border-top: 1px gray solid;

 border-bottom: 1px gray solid; background: lightblue;}

H3 {clear: both;margin-bottom: 0pt}

Last, if you are running IE5.0, you can view a version of the first two pages of this article written using XML, transformed using the described XSL, and formatted with CSS! We also recommend you read our followup article that shows you how to use XML and XSL on the server using ASP. By performing the transformations on the server you are not limited to IE5 only.

Cross Browser Dynamic HTML Tables

http://www.siteexperts.com/tips/databinding/ts06/paper/dhtml_table.htm
by Dieter Bungers

1 Introduction

1.1 Dynamic Tables

Assume you have to publish a set of some hundred records of tabular data the types of which are quite simple such as a logical yes/no data, a number, a short text or a calendar date. In most cases it's useful to present these data in form of a dynamic HTML table, i.e. a table that enables your audience to analyze the data through sorting and filtering the records and to display these records step by step instead of presenting them all at once.

This paper describes how you can easy build up such dynamic HTML tables only by means of simple JavaScript.

1.2 Reusable Example

Along with this paper, we provide an example of a dynamic HTML table. It's an overview on the Inside and Outside Techniques published by SiteExpert.com. You can search, select, sort and display the records on many different ways so you can easy find the resources you are just interested in. Many thanks to Scott Isaacs for providing me with the ACCESS database the example is based on.

Click here to open the example table.

The example is performed bay two HTML, two JavaScript, three GIF and one CSS Style Sheet file. It is reusable in the sense that you can simply replace the file that contains the tabular data by another one in order to get a dynamic table for your own tabular data. You can also change the appearance of the table by changing the style definitions in the CSS Style Sheet file.

2 Features

2.1 Technical features

2.1.1 Cross Browser Capability

The technique works with MS IE4+ as well as with Netscape Navigator 4+.

2.1.2 Offline Capability

The technique is realized only by means of standard JavaScript. No server scripting or CGI programming is used. Therefore it works offline as well as in the web.

2.1.3 No Reload

The data set is downloaded as a whole when the user accesses the document the first time. After that, filtering and sorting of records and redisplaying the table happen without any reload. It's really fast!

2.1.4 Separate Management of the Tabula Data

The tabula data are managed in a separate file. By this, the technique can be reused simply by replacing this file (see above).

2.2 Functional features

2.2.1 Data Types

The columns of tabular data may be of different types. The technique described here supports five data types as follows:

1. Logical (yes/no data)

2. Number (integer or float)

3. Calendar date of the form MM/DD/JJJJ

4. Options (a limited number of text alternatives)

5. Text (plain or HTML)

2.2.2 Automatic Generation of Data Type Specific Filters

When the user opens the table a Filter Window opens automatically. It contains a HTML form that enables the user to define some column's filters, i.e. to specify how to compare the values of a table column with a constant value in order to decide whether a record shall be displayed or not.

The specific data type of a column is taken into consideration when displaying its filter: For example, if the data type is "Logical" the user simply checks a box, and if the data type is "Number" he can choose a comparison operator ("<", "<=", "==", ">=", ">") and put in a constant value.

2.2.3 Well-known Sort Feature

The user can sort the records of the data set the same way he is used to sort files and directories in most operating systems such as Windows: If he clicks a column header first the records are sorted upwards with respect to the contents of that column. The sort direction alters if he clicks the same column header again.

3 How to Use

3.1 When?

Consider using this technique if:

· You have a simple data set to display (see supported data types above).

· You need to browse your data offline.

· You want to prevent direct access to your database management system (DBMS).

· You want to present your data set to Netscape Navigator users as well as to IEusers. (If you would present it only to IEusers you should consider to use Microsoft's Tabular Data Control (TDC), see "isdn Online Web Workshop" for more information).

3.2 Reuse of the Example Files

If you want to browse and analyze your own tabula data the same way as you do with the SiteExpert.com resources in our example you must only replace the table declaration file "theTab.js" by another one while leaving all other files in the same directory. Then open "Table.htm". That's all.

In the following, you'll learn how to create such table declaration file.

3.2.1 The Table Declaration

The table declaration contains all information about the tabular data that are needed to build up the dynamic table, namely its title, its column definitions and its cell contents. You must provide this information by initializing three global JavaScript variables as follows:

· The title, i.e. title line of the table window is defined as a string variable named "theTitle".

· The columns are defined as an array named "theCols" the entries of which are arrays themselves. The elements of each entry describe a column as follows:

1. The column name that appears in the table header and also in the Filter Window

2. The number of the data type that can vary from "0" for "Logical" up to "4" for "(HTML) text" (see above).

3. The minimum width of the column in the table (used for the width attribute in the <th>-tags of the table's header).

4. The option tags and texts. This is only needed if the data type is "3. Options".

· The table rows are defined as an array named "theRows". Each of its entries is an array by itself and contains the contents of the table cells of this row.

3.2.2 Building up the Table Declaration

When writing the file "theTab.js" it takes only some minutes to put in the title and the column definitions. But if the table consists of some hundred rows (as is the case with our example) it would be somewhat lengthy to write the lines manually that initialize the entries of the array "theRows", i.e. the lines of the form "theRows[i] = new Array (...);".

Fortunately, in many cases the tabula data are already available in a data base system, in a spreadsheet or simply as a text file. If so, you can easy generate these lines. For example, if the tabula data we use in our example were available as an Excel table you can obtain the JavaScript code as shown here (Excel 97 for Windows; maybe you must replace the German function names "WENN" and "LINKS" in cell T2 with the corresponding English function names "IF" and "LEFT" respectively and then copy this cell to all cells below of it). You then simply copy the column containing the result into the right place of the file "theTab.js".

If you want to use this technique to present living tabula data from your data base system in the Web you must generate the file "theTab.js" each time the data base is updated.

3.2.3 Changing the Table's Appearance

As the appearance of both, the table and the Filter Window is determined by the style sheet defined in the file "tabStyle.css" it's easy to change it. Simply replace the parameters for fonts, colors, backgrounds etc. in this file to get another appearance.

4 How it Works

4.1 Basic Idea

The requirement of cross browser capability is essential for the decision on the techniques to be used here. There are more powerful and elegant techniques provided with Microsoft's Tabular Data Control (TDC, see above). But these techniques are only supported by MS Internet Explorer.

The basic idea is similar to that I used for realizing the "Cross Browser Expanding and Collapsing Table of Contents Menu" also published at SiteExperts.com:

· The display and later modifications of the table are completely accomplished by some JavaScript functions defined in the JavaScript file "displayTab.js".

· All information these functions need to do so is described in the table declaration as described above.

· The JavaScript functions and declarations are persistently defined with a frameset definition. (We need a frame definition even there is only one document, namely the table to display as this is the only place we can hold the JavaScript functions and declarations persistently).

4.2 Some Details

In the JavaScript file "displayTab.js", you'll find all scripts for filtering, sorting, and displaying the table. There are a lot of comments so it's easy to understand how they work. In this section, I merely want to direct your attention to only some important details.

4.2.1 Container for Filtering and Sorting Results

There is an array called "theColumn" that functions as a container for the results of sorting and filtering. Each entry of "theColumn" is a two element array by itself. The first element is reserved for the row value to be sorted and the second element contains a row index selected by the filtering process, i.e. an index of an entry of the array "theRows".

When the table (or a part of it) is displayed the elements of the array "theRows" are shown and ordered as indicated by the second element of the entries of "theColumn". As "theColumn" is global it is ensured that the table remains filtered and sorted as long as the user doesn't change his sorting and filtering instruction.

4.2.2 How the Filtering Works

The filtering is performed by the function "newTable()". It is called by the onClick event of the "Go!" button in the bottom line of the Filter Window. All filter information comes from the form "inputs" defined there. The function doesn't need any further parameter.

The filtering process consists of three steps described as follows:

1. First we build the string variable of some JavaScript code named "theFilter". It's set to "true" if the user didn't define any filter. Otherwise it consists of some comparison expressions corresponding to the user's input in the Filter Window. The data type of a column decides the way the user's input has to be transformed into a valid comparison expression. The comparison expressions are concatenated by the AND-Operation "&&".

2. Then the filter is applied by evaluating the string "theFilter" in order to obtain the indexes of the table rows (i.e. of the array theRow) that have to be displayed. This results in an update of the container "theColumn", the second subelement of the elements of which are the selected indexes.

3. Finally, the table is sorted and redisplayed by means of the "mySort" and "scrollTable" functions.

4.2.3 How the Sorting Works

We merely sort this container and access the cell values of the array "theRows" via the index in the second element which is more efficient than sorting the array "theRows" itself.

The sorting procedure consists of four steps:

1. First, we find out the column "k" the user wants to be sorted and determine the new sort direction "kSort[1]" (first part of the function "mySort").

2. Then each first element of the entries j of "theColumn", i.e. "theColumn[j][0]", is set to the values to be sorted. Which value of the array "theRow" has to be transferred to there depends on the sort column "k" and the right row index which is the value of the second element of this entry, i.e. "theColumn[j][1]". So the value "x = theRows[theColumn[j][1]][k]" has to be taken. But we cannot simply transfer it. We must transform it before depending on its data type "dataType" that we found in "theCols[k][1]". For example, as the sorting of text is non case-sensitive, the values of this type are set to uppercase before (second part of the function "mySort").

3. Then the array "theColumn" is sorted by applying of the standard JavaScript sort method. This method requires a comparison function that defines the "before", "after" and "equal" relations it uses and must return the values 1,-1 or 0 respectively. In our script, this function is named "compare". It takes in consideration the sorting direction kSort[1] we determined in the first step (third part of the function "mySort").

4. Finally, the sorted table is displayed to the user. This is performed by the function "scrollTab(-2)". The parameter -2 instructs the function to show the first rows (see the comments to this function for the general meaning of this parameter).

5 Author's Statement

You may use the technique published in this paper as you want. You may copy the scripts provided here, modify them and use them for any purpose. The only condition is that if you publish web pages that use this technique you point to its author at a suitable place and don't remove the Author's Statement at the beginning of each script.

If you publish web pages that use this technique it's your responsibility to handle possible bugs even if you didn't modify any script. I cannot promise any support.

XML-Based Survey Server
By Scott Isaacs

In our last article we showed you how to create a content server. In the content server, you created your articles using XML, transformed them into HTML using XSL, all editable within a browser-based environment. In this article, we create a Survey Server where for creating multiple choice user surveys.

Like our content server, we use XML to manage all the survey-related information. A subtle, but important difference from the content server is that we are now using XML to store data. As you read this article, consider how combining XML as a data store and data description format with XSL to present the data can revolutionize how you interact with your databases.

Our Survey Server is a browser-based application. You create and edit surveys all from within your browser. Since the survey presentation is defined using XSL, you can quickly create new survey and result presentations. As we take you through the Survey Server, we will demonstrate the following techniques:

1. Storing multiple presentations in a single XSL file

2. Querying XML documents for specific information

3. Manipulating and transforming queried elements

4. and manipulating XML using the document object model

Survey Server Overview
The Survey Server consists of three core files:

An XML file storing the survey data - surveys.xml.

An XSL file describing the different presentation's for the data - surveys.xsl.

An ASP include file containing core functions for manipulating and generating Surveys - survey.inc.

These three files provide support for any number of surveys into your web-site. In addition, a single web page is provided for creating, editing and deleting surveys.

The XML data file, surveys.xml, defines the surveys and current number of votes in the following format:
<surveylist>

 <survey voters="20">

 <id>1</id>

 <question>Do you program with ASP?</question>

 <answer votes="13">Yes</answer>

 <answer votes="7">No</answer>

 </survey>

 <survey voters="201">

 <id>2</id>

 <question>Do you program with JavaScript?</question>

 <answer votes="53">Yes</answer>

 <answer votes="142">No</answer>

 <answer votes="6">I want to</answer>

 </survey>

</surveylist>

Each survey is defined within a survey element. To indentify each survey, an ID element is defined whose value must be unique across all surveys. Within each survey you can have one unique question element and any number of answers. The answers are presented in the same order they are stored.

To track the survey answers the number of votes are stored in the answer elements votes attribute. To improve efficiency, we also store the total number of votes in a voters attribute on the survey element.

The survey presentation is stored independently from the actual data. The Survey Server supports an extensible number of presentations. We currently provide two sample presentations - one that enables you to present the survey as a 468x60 banner, the other is a 125 pixel wide box that grows vertically. Below demonstrates both presentations of the first survey:

Horizontal Banner

	Top of Form

Do you program with ASP?
[image: image1.wmf]

1

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image2.wmf]

Ye

s

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image3.wmf]No

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image4.wmf]S

ometimes

Bottom of Form

	Managed by Survey Server from SiteExperts.com

Vertical Banner

	Top of Form

Do you program with ASP?
[image: image5.wmf]

1

[image: image6.wmf]Ye

s

[image: image7.wmf]No

[image: image8.wmf]

S

ometimes

Bottom of Form

	Survey Server from SiteExperts.com

After voting, the results are presented using a simple HTML-based bar chart based on our original HTML bar-chart technique.

	Do you program with ASP?

Total Voters: 25

Top of Form

[image: image9.png]
(68%)
Yes
[image: image10.png]
(28%)
No
[image: image11.png]
(4%)
Sometimes
Bottom of Form

	Survey Server, Copyright 1999, SiteExperts.com

This bar chart is also generated using an XSL file allowing you to easily modify and change the result presentation.

All the presentation information is defined in a single file, survey.xsl. New presentations can be added simply by adding a new section to the file. We continue by explaining how to define presentations within the survey.xsl file.

Presenting Survey's with XSL
The survey.xsl file contains blocks of XML representing different rendering schemes. Through a function in survey.inc (explained later), Individual presentations are extracted and applied to individual surveys.

Each presentation is separated by a render element. The render element contains a unique identifier. Below outlines how the render element is defined in the survey.xsl file:
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

 <render id="banner">

 <!-- define banner rendering -->

 </render>

 <render id="vbanner">

 <!-- define vbanner rendering -->

 </render>

</xsl:stylesheet>

Each render block is applied to an individual survey. Below is the definition of the 468x60 banner presentation:
<render id="banner">

<TABLE BORDER="1" WIDTH="468" HEIGHT="60" CELLSPACING="0">

 <TR><TD ALIGN="CENTER">

 <FORM>

 <xsl:value-of select="question"/>

 <INPUT TYPE="HIDDEN" NAME="ID">

 <xsl:attribute name="VALUE"><xsl:value-of select="id"/></xsl:attribute>

 </INPUT>

 <xsl:for-each select="answer">

 <INPUT TYPE="SUBMIT" NAME="VOTE">

 <xsl:attribute name="value"><xsl:value-of/></xsl:attribute>

 </INPUT>

 </xsl:for-each>

 </FORM>

 </TD></TR>

 <TR><TD ALIGN="right">

 <SMALL><SMALL>

 Managed by Survey Server from

 SiteExperts.com

 </SMALL></SMALL>

 </TD></TR>

</TABLE>

</render>

The XSL is applied to an individual survey element where the survey element defines the context for the style sheet. This means that the question element is an immediate child. This is interesting because it demonstrates that you can apply XSL to any node in the document, not just the root node (in this case the surveylist).

The XSL for the vertical banner works almost identical to the horizontal banner. The two differences are we adjusted the table width and now list each response on it's own line:
<render id="vbanner">

<TABLE BORDER="1" WIDTH="125" CELLSPACING="0">

 <TR><TD ALIGN="CENTER">

 <FORM>

 <xsl:value-of select="question"/>

 <INPUT TYPE="HIDDEN" NAME="ID">

 <xsl:attribute name="VALUE"><xsl:value-of select="id"/></xsl:attribute>

 </INPUT>

 <xsl:for-each select="answer">

 <P STYLE="margin:5px"><INPUT TYPE="SUBMIT" NAME="VOTE">

 </INPUT></P>

 </xsl:for-each>

 </FORM>

 </TD></TR>

 <TR><TD>

 <SMALL><SMALL>

 Survey Server from

 SiteExperts.com

 </SMALL></SMALL>

 </TD></TR>

</TABLE>

</render>

Both presentations are generate as follows:

1. The ID is added to the document in a hidden field:
<INPUT TYPE="HIDDEN" NAME="ID">

 <xsl:attribute name="VALUE">

 <xsl:value-of select="id"/>

 </xsl:attribute>

</INPUT>

2. Then the question is displayed:
<xsl:value-of select="question"/>

3. Finally we iterate and output each answer in a form field:
<xsl:for-each select="answer">

 <P STYLE="margin:5px"><INPUT TYPE="SUBMIT" NAME="VOTE">

 </INPUT></P>

</xsl:for-each>

You can rearrange the output simply by modifying the XSL sheet. Since XSL allows you to freely rearrange elements, your possibilities are endless. Next we introduce the survey.inc file. This file contains the ASP functions used to manipulate the surveys.

Core ASP Functions
The survey.inc file contains all of the functions for presenting and managing surveys. This file must be included into your ASP page. For example, if the survey.inc file is in the same folder as the ASP page:
<% Option Explicit %>

<!-- #include file="survey.inc" -->

The survey.inc file contains three functions for retrieving surveys, saving votes, and listing all surveys on the system. When you want to insert a survey into your page, you call the getSurvey function and output the results. This getSurvey function has two arguments, the unique ID that identifies the survey and the ID defining the rendering scheme you want to use. To output the survey with ID="1" with the vertical orientation style you call getSurveys as follows:
response.write(getSurvey(1,"vBanner"))

The getSurvey() function extracts both the survey and the XSL block based on the passed in identifiers. The returned XSL block is then applied to the survey and returned from the function:
function getSurvey(sID,sRender)

 Dim findNode, result, source, style, outputNode

 if sID="" then sID="1"

 if isempty(application("survey")) then

 loadSurveys

 end if

 if isempty(application("survey" & sID & sRender)) then

 set source = application("survey")

 set style = application("style")

 set findNode = source.selectSingleNode("surveylist/survey[id[. = """ & sID & """]]")

 if not findNode is nothing then

 set outputNode = style.selectSingleNode("xsl:stylesheet/render[@id=""" & sRender & """]")

 if not outputNode is nothing then

 result = findNode.transformNode(outputNode)

 application.lock

 application("survey" & sID) = result

 application.unlock

 else

 result = "ERROR - Bad Render ID"

 end if

 else

 result = "ERROR - Bad ID"

 end if

 else

 result = application("survey" & sID & sRender)

 end if

 getSurvey = result

end function

The function extracts the survey and applies it to the appropriate XSL block by executing queries against the XML. When examining the above function, notice the two calls to selectSingleNode. This method is used to locate the specific survey and rendering scheme. For example, the query that retrieves the survey with ID of "1" searches for the single survey node that contains the ID node with the value of "1":
surveylist/survey[id[. = "1"]]

Examining this query, the "/" is used to define the context we are searching in. The square brackets "[" are used to do deeper searches without switching the context. This query is looking for the survey node within the surveylist node that contains an id node of the value 1. By using the square brackets, we are specifying that we want the survey node returned even though we are searching the survey's contents. When the above query is run against our sample surveys, the following sub-tree is returned:
<survey voters="20">

 <id>1</id>

 <question>Do you program with ASP?</question>

 <answer votes="13">Yes</answer>

 <answer votes="7">No</answer>

</survey>

The rendering query works essentially the same way. The primary difference is we are matching the render node's ID attribute instead of an ID element. This is done using the "@" operator:
xsl:stylesheet/render[@id="vBanner"]

This returns the render element for the vBanner and provides access to the complete render sub-tree:
<render id="vbanner">

<TABLE BORDER="1" WIDTH="125" CELLSPACING="0">

 <TR><TD ALIGN="CENTER">

 <FORM>

 <xsl:value-of select="question"/>

 <INPUT TYPE="HIDDEN" NAME="ID">

 <xsl:attribute name="VALUE"><xsl:value-of select="id"/></xsl:attribute>

 </INPUT>

 <xsl:for-each select="answer">

 <P STYLE="margin:5px"><INPUT TYPE="SUBMIT" NAME="VOTE">

 </INPUT></P>

 </xsl:for-each>

 </FORM>

 </TD></TR>

 <TR><TD><SMALL><SMALL>Survey Server from SiteExperts.com</SMALL></SMALL></TD></TR>

</TABLE>

</render>

Finally we execute the transformNode function with the returned XSL node against the survey. Since the survey's output is always the same there is no need to regenerate the output on every request. Therefore, to improve performance we cache the generated output in the application object. If you modify the XSL sheets to include dynamic information (eg., total votes, etc), you may need to modify our caching scheme.

In our next section, we show you how a user's vote is processed and how the results are rendered.

Saving an individuals vote is very simple. The survey.inc file contains a function, voteSurvey(), that takes the survey ID and user's vote, and saves the updated results. This function returns an HTML-based bar chart of the results.
function voteSurvey(sID,sVote)

 Dim findNode, result, rootPath, source, resultStyle

 if sVote<>"" then

 set source = application("survey")

 set resultStyle = application("style").selectSingleNode("xsl:stylesheet/render[@id=""results""]")

 set findNode = source.selectSingleNode("surveylist/survey[id[. = """ & sID & """]]/answer[.=""" & sVote & """]")

 if not findNode is nothing then

 findNode.setAttribute "votes", findNode.getAttribute("votes") + 1

 set findNode = findNode.parentNode

 findNode.setAttribute "voters", findNode.getAttribute("voters") + 1

 rootPath = server.mappath(".") & "\src\"

 saveSurveys source

 result = findNode.transformNode(resultStyle)

 else

 result="ERROR - Invalid Choice"

 end if

 end if

 voteSurvey = result

end function

This function has similar queries to the getSurvey() function except the initial query against the surveys returns the matching answer element. Once this node is retrieved, we update the number of votes and the total votes and save the file back to disk. After saving, we use the "results" rendering element to generate a bar chart.
<render id="results">

<TABLE BORDER="1">

 <TR><TD ALIGN="CENTER">

 <P><xsl:value-of select="question"/></P>

 Total Voters: <xsl:value-of select="@voters"/>

 <FORM>

 <INPUT TYPE="HIDDEN" NAME="ID">

 <xsl:attribute name="VALUE"><xsl:value-of select="id"/></xsl:attribute>

 </INPUT>

 <TABLE ALIGN="center">

 <xsl:for-each select="answer">

 <TR><TD VALIGN="middle">

 <TABLE CELLSPACING="0" CELLPADDING="0" HEIGHT="5">

 <TR><TD BGCOLOR="blue">

 <xsl:attribute name="WIDTH">

 <xsl:eval>Math.round(this.getAttribute("votes")/this.parentNode.getAttribute("voters") * 100)</xsl:eval>

 </xsl:attribute>

 <xsl:attribute name="WIDTH">

 <xsl:eval>Math.round(this.getAttribute("votes")/this.parentNode.getAttribute("voters") * 100)</xsl:eval>

 </xsl:attribute>

 </TD><TD>

 <SMALL>

 (<xsl:eval>Math.round(this.getAttribute("votes")/this.parentNode.getAttribute("voters") * 100)</xsl:eval>%)

 </SMALL>

 </TD></TR></TABLE>

 </TD><TD><xsl:value-of/></TD></TR>

 </xsl:for-each>

 </TABLE>

 </FORM>

 </TD></TR>

 <TR><TD ALIGN="right">

 <SMALL><SMALL>

 Survey Server, Copyright 1999,

 SiteExperts.com

 </SMALL></SMALL>

 </TD></TR>

</TABLE>

</render>

To generate the bar chart, we generate an HTML table and use colored table cells to create the chart. This is the same technique presented in our HTML Bar Chart article.

If you have been following the code closely, you may have noticed that we never opened the XML or XSL files but rather are retrieving the XML objects from the global application object. If you look back at the original getSurvey() function you will find a small if-then statement where we test whether the surveys have been loaded:
 if isempty(application("survey")) then

 loadSurveys

 end if

This statement checks whether the surveys have been loaded. If the survey property on the application object is empty, then the surveys are not yet loaded and the loadSurveys function is called:
function loadSurveys()

 Dim source, style, rootPath

 rootPath = server.mappath(".") & "\src\"

 set source = Server.CreateObject("Microsoft.FreeThreadedXMLDOM")

 source.async = false

 source.load rootPath & "surveys.xml"

 set style = Server.CreateObject("Microsoft.FreeThreadedXMLDOM")

 style.async = false

 style.load rootPath & "surveys.xsl"

 application.lock

 set application("survey") = source

 set application("style") = style

 application.unlock

end function

This function loads the XML and XSL file from disk and caches them in the global application object. You have now seen how the surveys are generated and rendered. To make the Survey Server more usable we created a Survey Manager Page. This page allows you to edit and delete existing surveys.

Survey Manager
The survey manager page allows you to add, edit, and remove surveys. The survey manager screen reuses some of the techniques presented earlier to display the survey list. In addition, we generate the editor for individual surveys by manipulating the XML Document Object Model rather than creating an XSL sheet. We chose this approach to demonstrate an alternative way to manipulate and generate HTML.

The Survey Manager starts by listing all the available surveys. The list is generated using the same techniques presented earlier. To get a list of surveys you call the getSurveyList() function. This function transforms the entire survey list using the stylesheet identified as "listing":
function getSurveyList()

 Dim source, style, outputNode, result

 set source = application("survey")

 set style = application("style")

 set outputNode = style.selectSingleNode("xsl:stylesheet/render[@id=""listing""]")

 if not outputNode is nothing then

 result = source.transformNode(outputNode)

 else

 result = "ERROR - Bad Render ID"

 end if

 getSurveyList = result

end function

The "listing" style sheet is a fairly simple XSL transformation. The style sheet and its output are shown below:
<render id="listing">

<H1>Survey Editor</H1>

<xsl:for-each select="surveylist/survey">

 <A>

 <xsl:attribute name="HREF">?id=<xsl:value-of select="id"/></xsl:attribute>

 <xsl:value-of select="question"/> (<xsl:value-of select="@voters"/> votes)

 <xsl:for-each select="answer">

 <xsl:value-of/> (<xsl:value-of select="@votes"/> votes)

 </xsl:for-each>

</xsl:for-each>

<FORM>

<INPUT TYPE="SUBMIT" NAME="New" VALUE="Add New..."/>

</FORM>

</render>

	Survey Editor

· Do you program with ASP? ?(25 votes)
· Yes ?(17 votes)

· No ?(7 votes)

· Sometimes ?(1 votes)

· Do you program with Javacript? ?(201 votes)
· Yes ?(53 votes)

· No ?(142 votes)

· I want to ?(6 votes)

Top of Form

[image: image12.wmf]Add New...

Bottom of Form

When an individual suvey is selected, we create a simple editor. The editor for the survey is generated using the XML Document Object Model.
function getPoll(sID)

 Dim source, findNode

 set source = application("survey")

 set findNode = source.selectSingleNode("surveylist/survey[id[. = """ & sID & """]]")

 set getPoll = findNode

end function

function buildEdit(sID)

 Dim source, findNode, question,answer, i, sQuestion, iAnswer

 response.write("<H1>Survey Editor :")

 if sID<>"" then

 response.write(" Edit Survey</H1>")

 set findNode = getSurveyFromID(sID)

 if findNode is nothing then

 response.write("Survey (ID " & sID & ") not found - Adding new Survey!
")

 sID=""

 sQuestion=""

 iAnswer=0

 else

 set question = findNode.selectSingleNode("question")

 sQuestion = question.text

 set answer = findNode.selectNodes("answer")

 iAnswer = answer.length

 response.write("Survey ID: " & sID & "")

 end if

 else

 response.write(" New Survey</H1>")

 sQuestion = ""

 iAnswer = 0

 end if

 response.write("<FORM METHOD=""POST"" ACTION=""?"">Question: <INPUT NAME=""question"" SIZE=""30"" TYPE=""text"" VALUE=""" + sQuestion + """><P>")

 response.write("<TABLE><TR><TH></TH><TH>Answer</TH><TH>Votes</TH></TR>")

 for i=0 to numanswers-1

 response.write("<TR><TD ALIGN=""RIGHT"">" & (i+1) & ".</TD><TD><INPUT NAME=""answer" & i & """ SIZE=""20"" TYPE=""text"" VALUE=""")

 if (i<iAnswer) then

 response.write(answer(i).text)

 end if

 response.write(""">")

 response.write("</TD><TD ALIGN=CENTER><INPUT STYLE=""text-align:right"" NAME=""votes" & i & """ SIZE=""3"" TYPE=""text"" VALUE=""")

 if (i<iAnswer) then

 response.write(answer(i).getAttribute("votes"))

 end if

 response.write("""></TD></TR>")

 next

 response.write("<TR><TD COLSPAN=3 ALIGN=CENTER><INPUT TYPE=""HIDDEN"" NAME=""ID"" VALUE=""" & sID & """>")

 response.write("<P><INPUT TYPE=""SUBMIT"" NAME=""Save"" VALUE=""Save""> ")

 if sID<>"" then

 response.write("<INPUT TYPE=""SUBMIT"" NAME=""Delete"" ONCLICK=""return confirm('Are you sure you want to delete this Survey?')"" VALUE=""Delete"">")

 end if

 response.write("</TD></TR></TABLE></FORM>")

end function

	Survey Editor : Edit Survey

Survey ID: 1

Top of Form

Question: [image: image13.wmf]

Do you program with ASP?

Answer
Votes
1.
[image: image14.wmf]

Yes

[image: image15.wmf]

17

2.
[image: image16.wmf]

No

[image: image17.wmf]

7

3.
[image: image18.wmf]

Sometimes

[image: image19.wmf]

1

4.
[image: image20.wmf]

[image: image21.wmf]

…

…

…

10.
[image: image22.wmf]

[image: image23.wmf]

[image: image24.wmf]S

ave

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image25.wmf]Delete

Bottom of Form

We chose to create the survey editor using the document object model instead of XSL. We recommend you compare the above script to the XSL sheets presented earlier. The XSL sheet would be much easier to manipulate and change if you want to update the layout. Also, since the XSL sheet requires proper XML, it is much more difficult to generate bad HTML. Using a script like the one above makes it very easy to generate badly formatted HTML.

Editing the Survey List
The Survey Editor supports three operations, deleting, editing, and creating surveys. First we show you how a survey is deleted. The code to delete a survey is very straightforward. We just remove the nodes representing the survey from the document. This is accomplished in very few lines of script. First, you query the document for the survey node, you then remove this node from the survey list, and finally you just write the survey file back to disk:
function deletePoll(sID)

 Dim findNode

 set findNode = getPoll(sID)

 if findNode is nothing then

 response.write("ERROR - Survey not found")

 else

 findNode.parentNode.removeChild(findNode)

 saveSurveys findNode.ownerDocument

 end if

end function

Saving a Survey
The last operation is saving a survey. This code is used for saving new surveys as well as existing ones.
function saveSurvey(oRequest)

 dim i,iVotes,iVote,oNode, oSurvey, oQuestion, oQuestionText

 dim sID,oRoot,oVotersAttribute,oAnswer,oVotesAttribute,oAnswerText

 dim oID, oIDText

 set oNode = nothing

 set oRoot = application("survey")

 set oSurvey = oRoot.createNode(1,"survey","")

 set oID = oRoot.createNode(1,"id","")

 set oQuestion = oRoot.createNode(1,"question","")

 set oQuestionText = oRoot.createTextNode(oRequest.form("question"))

 oSurvey.appendChild(oID)

 oQuestion.appendChild(oQuestionText)

 oSurvey.appendChild(oQuestion)

 for i=0 to numAnswers-1

 if Trim(oRequest.form("answer" & i))<>"" then

 iVote=oRequest.form("votes" & i)

 set oAnswer = oRoot.createNode(1,"answer","")

 set oAnswerText = oRoot.createTextNode(oRequest.form("answer" & i))

 set oVotesAttribute = oRoot.createAttribute("votes")

 oAnswer.appendChild(oAnswerText)

 oSurvey.appendChild(oAnswer)

 if isnumeric(iVote) then

 oVotesAttribute.nodeValue = iVote

 iVotes = iVotes + cInt(iVote)

 else

 oVotesAttribute.nodeValue = 0

 end if

 oAnswer.attributes.setNamedItem(oVotesAttribute)

 end if

 next

 set oVotersAttribute = oRoot.createAttribute("voters")

 oVotersAttribute.nodeValue = iVotes

 oSurvey.attributes.setNamedItem(oVotersAttribute)

 sID = oRequest.form("id")

 if sID<>"" then

 ' Replace existing survey

 set oNode = getSurveyFromID(sID)

 oNode.parentNode.replaceChild oSurvey,oNode

 else

 ' Add new survey

 Set oNode = oRoot.selectSingleNode("surveylist")

 sID = oNode.lastChild.selectSingleNode("id").text

 sID = cInt(sID) + 1

 oNode.appendChild(oSurvey)

 end if

 set oIDText = oRoot.createTextNode(sID)

 oID.appendChild(oIDText)

 saveSurveys oRoot

end function

This function is actually fairly simple. It constructs an individual survey node by node and inserts it back into the XML document. While this may seem tedious it is a very straightforward and easy operation. We recommend you read our Content Server article for an explanation on how these methods works.

Download the Survey Server
Installing the Demonstration
You must have IIS, ASP, and Microsoft's XML parser installed. Next, download and unzip the sample files. Unzip these files into your web root (or a virtual directory on your site). In the root (or virtual) directory, you will find two ASP files: voter.asp and surveymanager.asp. The voter.asp let's you view and vote on each survey. The surveymanager.asp is for editing the individual surveys and creating new ones.

In addition, one directory will be created - SRC. The SRC directory contains all the raw XML and XSL files. To edit, add, or delete renderings, edit the XSL file in your favorite editor. Download Survey.zip
Using Survey Server on your Site
Survey Server can be reused on your site. We ask that you retain a visible InsideDHTML.com, LLC copyright notice with any use. Survey Server cannot be shipped with any commercial product without prior permission of SiteExperts/ InsideDHTML.com, LLC.

Writing for the Web
By Matt Mickiewicz from Webmaster-Resources.com
It is very easy to forget that it's not the layout, the graphics, or that fancy JavaScript rollover that attracts people to your site. It is the content. Graphics, layout, and the rest are just the spice. By following ten simple guidelines you can greatly increase the readability of your writing...

1.) Check Spelling and Grammar

Good writing begins with good spelling and grammar. In addition to running all your work through a good spelling and grammar checker, having at least one other person carefully read through your writing is a very good idea. Every article/review that I post on Webmaster-Resources.com has been proofread by at least one person.

2.) Make it scannable

Most people don't read online content, they scan it. Writing meaningful subheadings, and making them stand out by bolding them is an excellent method of making your text more scannable. Avoid vague, or "cute" headings. Rather, try to have the heading summarize the content of the paragraph below it.

Using bulleted lists to give an overview of key points in an article is also an extremely effective way of making your content easier to digest.

Avoid over-bolding. Overdoing it destroys the entire point of bolding text in the first place, which is to make something stand out from the rest of the page. As a general rule, only the title of the article, and the subheadings should be bold. Likewise, avoid underlining text for emphasis. Underlined text is generally understood to be a link. Italicized text also doesn't work well, because of the resolutions of current monitors.

3.) Blank line vs. Indents

There are two ways to separate paragraphs. Either indent the start of each paragraph, or insert a blank line between paragraphs as I have done in this newsletter. Each method has its own pros and cons. Indents work well for long pieces of text, while blank line typography makes pages more scannable, and creates more white space on a page which provides the eyes of the reader a place to rest. Choose one method, and stick with it.

4.) Alignment, Line Length

In most countries, people read from left to right. Therefore it is only logical that all the text on your website be aligned to the left side of the page. Centered or right-aligned text is difficult too read, causes eye-strain, and is unbearable for long pieces of text. Avoid the urge to center your subheadings, align left, just like the rest of your page.

Newspapers have long realized the value of short line length. That's why most articles are in narrow columns, rather than going across the entire page. Likewise, magazine articles are split into columns rather than going across the entire page. Unfortunately, most designers have not yet learned the basics of good typography. Therefore most webpages have line lengths that are way to long for comfortable reading. Generally, you should have no more than 15 words on a single line, or roughly 65 characters.

5.) Keep scrolling to a minimum, and keep content short

Internet users hate to scroll. If you have to post long pieces of text online, split it up into multiple pages. C|NET, Wired, and Webmaster-Resources.com all have a rough 500 words/page limit.

Splitting content over multiple pages also increases the chances that someone will read through the entire thing. If someone hits a page and sees dozens of screens, full of text, they are unlikely to even begin reading it. The prospect of reading a huge chunk of text onscreen will not seem very appealing. Breaking it into smaller, manageable chunks, greatly increases the probability that someone will read through the entire thing.

Studies have shown that people read 25% slower onscreen than they do on paper. This means that you should make your content at least 25% shorter than an equivalent text version.

6.) Black against white

One very common mistake is using "busy" backgrounds that distract the eye from the text. If you have to use a background image dull it down so that it doesn't pull the viewers attention away from the text. The classic white background with black text is still the best choice for text heavy pages.

7.) The International Factor

The Internet is truly a global phenomenon. The Internet doesn't just reside within the boundaries of the USA. As a courtesy to your international visitors, please note somewhere on your front page if your products/offers/contests are only available to residents of the US.

The International factor should extend to the rest of your website. Tell your visitors what currency prices are quoted in. Use short sentences, and avoid using English slang or region-specific words.

8.) Typefaces

There are two fonts specifically designed for maximum readability on screen, they are the Verdana and Georgia typefaces. The only down side to these two fonts is that they do not print out very well. Arial and Times Roman are both very legible both onscreen and off. Unless you have a good reason not to, stick to these four fonts.

9.) Avoid Caps

People read by recognizing the overall shape of words. CAPS slow down the character recognition ability of a person, and with it their reading speed. Therefore, caps should be avoided completely, even in headlines.

10.) Keeping it current

Many websites cover a topic that is constantly in a flux. If your site is one of them, be sure to set aside some time to revise content to keep it current. Keeping it up to date not only increases the value of your website, but it is a valuable service to your visitors.

Simple ASP Authentication System

by Manohar Kamath
Feb 15th, 1998
This article describes how you can secure ASP applications using simple, but quite effective authentication schemes. This article uses a very simple way to achieve this. Just follow the steps and you have a secure login system.

Note: You can download the entire source code and database for this article.

Step 1: Create a table of users
[image: image26.png]Just create a simple table of user logins and passwords. I have included a database userinfo.mdb with this example, which contains a sample table tUsers. tUsers has two fields - Username and UserPassword. Username is the primary key.

Download and copy this database on your hard disk.

Step 2: Set the default authentication status
This you do in the gobal.asa file. All you have to do is, set a session variable to a default "not authenticated" status.

Why? Because, when a users first come into the application, they are not valid until you have checked their "credentials." The default status makes sure that everyone has to go through the front door.

In global.asa file, within the Session_OnStart event, write this code

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
SUB Session_OnStart
 ' This is the default authentication status
 Session("Authenticated") = 0
END SUB
</SCRIPT>

The authentication status is the most important thing to keep in mind, so don't forget this.

Step 3: Create a login page
This is an ASP page, with just HTML in it. Call it say login.asp. For your convenience, here is the sample code:

<HTML>
<BODY BGCOLOR=FFFFFF>
<FORM ACTION="verify.asp" METHOD=POST>
Name:
<INPUT TYPE=TEXT SIZE=20 NAME=USERNAME>

Password:
<INPUT TYPE=PASSWORD SIZE=20 NAME=USERPASSWORD>
<INPUT TYPE=SUBMIT VALUE="Login Now">
</BODY>
</HTML>

It contains a form with 2 INPUT elements. These elements are used to collect the user name and password of the user. This information we POST to verify.asp where we verify if the user is valid or not.

Step 4: Create the system DSN for the database
In order to access the userinfo.mdb, we need to create a system DSN in ODBC. If you are familiar with ASP, you can choose your own DSN scheme. To create a system DSN, do the following:

· Open the Control panel of your machine (in Start/Settings menu in Win95/NT)

· Click on "ODBC"

· Click on "System DSN" tab

· Click "Add". Choose the "Microsoft Access Database Driver", and click "Finish"

· Give the DSN a name, say "LoginDSN" In "Database" settings, click "Select" and point to the userinfo.mdb on your hard disk.

· Click OK

This sets up a system DSN named "LoginDSN" on your machine. This will point to the userinfo.mdb on the hard disk.

Step 5: Create an authentication page
This is the verify.asp page we saw in step 3. In this page, we check for valid users. We get the user information from the login.asp (remember the form elements?)

Our intent is

· Check for valid users and set the authentication status accordingly

· If the user is valid, the authentication status is 1

· If the user is invalid, the authentication status is 0

The code for verify.asp is as shown below. You can modify it accordingly.

<%
' Create a command object. This object serves to run our queries
Set Cm = Server.CreateObject("ADODB.Command")
' Specify the system DSN path
Cm.ActiveConnection = "LoginDSN"
' Now it's time for the query. We need to check the user information
' against the table tUsers
Cm.CommandText = "SELECT * FROM tUsers WHERE " & _
 "UserName='" & Request.Form("UserName") & "' AND " & _
 "UserPassword='" & Request.Form("UserPassword") & "' "
' Set the query type. 1 means it is a SQL statement
Cm.CommandType = 1
' Retrieve the results in a recordset object
Set Rs = Cm.Execute
' We now check if the user is valid. If user is valid, the recordset MUST
' haverecord. Otherwise it is empty. If user exists, we set authentication
' status to 1 and send the user to appropriate page, say welcome.asp.
' Else send the user back to login.asp
If Rs.EOF Then
 Session("Authenticated") = 0
 Response.Redirect ("login.asp")
Else
 Session("Authenticated") = 1
 Response.Redirect ("welcome.asp")
End If
%>

Step 6: Check the authentication status
This is the important piece of our system. We must check the authentication status on EACH ASP PAGE that we want to be secured. This is simple to do. Just check if the authentication status is 1, if not send the user back to login.asp. The sample code is

<%
If Session("Authenticated") = 0 Then
 Response.Redirect ("Login.asp")
End If
%>

Alternatively, you can copy this code into a file, say check.inc, and include the following code on top of your files instead.

<!-- #include file="check.inc" -->

As I mentioned before, this code needs to go on TOP of each page that you want to [image: image27.png]protect.

The above 6 steps help you to create a simple authentication system. Remember that this system protects ONE virtual directory and not the whole web site. You need to create one for each virtual path you want to secure.

Also, the above system is targeted towards new users. The database and the code is kept simple so you can learn from it. The entire system can be downloaded from this site. The zipped file contains the database and all the files.

Querying an Access database in ASP

by Manohar Kamath
Active Server Pages allow us an easy means of querying and updating a database from a webpage. This article describes the basics of using this technique in a nutshell. The examples given here utilize a Microsoft Access database, but the principles elucidated apply equally well to ASP integration with other databaes. (Access has been selected because it is widely familiar, easy to use, and adequate for many small to medium-sized projects.)

We will be using the Connection object throughout the examples since it is very easy to handle. In the following discussion we will see the two most common ways of using command object with Access database.

The Database
The database is a simple one-table one, with a member information table. The table is a simulated library database, with the information about its members.

The member-id is the primary key and it contains the member information like last name, first name etc. as shown in the diagram on the left. Our goal is to create queries based on this table.

SQL Queries
These are the most simple to create.These are based on SQL statements in the Command object. All you need for this exercise is a fair understanding of SQL commands - SELECT, DELETE, and UPDATE.

	E.g. Generate a detailed report of all the members living within the ZIP area 60194. Note that the zip field is a TEXT field of length 5
' First let us create Connection and Recordset objects
Set Conn = Server.CreateObject("ADODB.Connection")
Set Rs = Server.CreateObject("ADODB.RecordSet")
' Open the connection to the ODBC source, in this case
' the Access database
Conn.Open "your_ODBC_source"
' Now, create the SQL statement
sSQL = "SELECT * FROM tbl_member WHERE zip='60194'"
' Execute the SQL statement, and set the recordset object
' to the result of this execution. We obtain the resulting
' records in Rs object
Set Rs = Conn.Execute(sSQL)
' Use this RecordSet object to populate your HTML output stream
' In this example, we will just write out the last name field
Do While NOT Rs.EOF
 Response.Write(Rs.Fields("lName").value)
 ' Move to the next record in the resultset
 Rs.MoveNext
Loop
' Close the Recordset object and destroy it
Rs.Close
Set Rs = Nothing
' You might want to release the resources for connection object,
' unless you want to use the same connection again in the later code
Conn.Close
Set Conn = Nothing

With the above things (as in documentation) in mind, you could create any SQL query in ASP. However, there are a few things to note while working with ASP and Access.

· Using LIKE and * operators in SQL statements
Although * is a wild-card character for SQL with LIKE clauses, you need to replace this with % character. E.g. the following query is in standard SQL
SELECT * FROM tbl_member WHERE lname LIKE 'smith*'

When using this in ASP (or ADO in general), use the following syntax
SELECT * FROM tbl_member WHERE lname LIKE 'smith%'
· Using 's (apostrophes) in text fields
This is probably the most common problem discussed in the ASP newsgroups. One ' in a text field within the SQL query screws up the whole SQL statement to produce some esoteric ODBC errors. E.g. Say you have an SQL statement which runs like this
"INSERT INTO tbl_member VALUES (" & iMemID & ", '" & sLname & "'

where iMemID, sLname.. are dynamically produced values (say, from a form). When everything is all right, the final SQL produced may look like
INSERT INTO tbl_member VALUES (10, 'smith',)

Now, a last name like D'Abo could result in a statement like
INSERT INTO tbl_member VALUES (10, 'D'Abo', ...)

Note the value 'D'Abo', which leaves one ' dangling. This is what causes the ODBC error since the SQL syntax is not right.

This problem could easily be corrected. Just replace one ' with two 's. Use the Replace function in VBScript.
sLname = Replace(sLname, "'", "''")
easily fixes this problem. Use Replace for each field, that makes up the SQL statement, which may contain apostrophes.

File DSNs - Use and Reuse (by Manohar Kamath)
Many a time, you are confronted with creating a system DSN for use with ASP. If you have an ISP account, this might take time and more than sometimes - money. This article describes how to use File DSNs and save time and money. Also, you can reuse these DSNs and thus, with some modifications, use the same DSN for as many database connections.

What’s a DSN ?

According to Microsoft documentation, it means "The name that applications use to request a connection to an ODBC data source." In other words, it is a symbolic name that represents the ODBC connection. It hides the connection details like database name, directory, database driver, UserID, password, etc. So when making a connection to the ODBC, you don’t have to remember the database name, where it resides, etc.

So, what’s a file DSN ?

Before we discuss this, let me the list the various types of DSNs.

· System DSN: This is the DSN used through out the system, no matter which user logs in. Meaning, all users on the system can see this DSN and use it (as long as they know the user ID and password). The connection parms are stored in the registry.

· User DSN: This is a DSN created for a specific user. Only the user who created the DSN can see this and use it. Like System DSN, the information is stored in the registry.

In both these two cases, DSN details are stored in the system registry.

With that, let me explain what a file DSN is. Instead of storing the DSN details in registry, you store it in a file - simple ?! Yes, it is. The file is a simple text file, with a .DSN extension.

Although it sounds simple, you need to know the parameters that make up a DSN. But again, it is not all that difficult, as you can look this up in any ODBC reference, or online help that comes with Visual Basic or Access.

Creating file DSNs and reusing them

Shown below is a generic file DSN for an MS Access database.

------------- file.dsn -------
[ODBC]
DRIVER=Microsoft Access Driver (*.mdb)
ReadOnly=0
UserCommitSync=Yes
Threads=3
SafeTransactions=0
PageTimeout=5
MaxScanRows=8
MaxBufferSize=512
ImplicitCommitSync=Yes
FIL=MS Access
DriverId=25

I call the file file.dsn, you may rename it appropriately.

Creating this file is half work done. The next step is creating a connection. When using a system DSN, you create a connection by simply using the system DSN name, something like

Conn.Open "MyDSN"

While using the file DSN shown above, you need a few more parameters I purposely left out so that you could reuse the file DSN. The final connection string will look like

"filedsn=c:\webdir\file.dsn;DBQ=c:\database\mydb.mdb;UID=admin;PWD=admin;"

c:\webdir is the directory where file DSN resides. This requires a physical path to the file. On an ISP, you could use Server.mapPath method to determine this directory. Something like

Server.MapPath("/mysite/file.dsn")

the same holds for DBQ parameter. UID and PWD are optional.

In summary, to create a reusable file DSN

1. Create a text file with DSN parameters. This file has a .dsn extension

2. Create the connection string, with the filedsn and DBQ parameters. You can determine physical paths using Server.MapPath method

3. Use the DSN for as many databases you want, by changing just the DBQ, UID and PWD parameters

Note that databases other than MS Access require different values for parameters and also some additional parameters.

_1019487208.unknown

_1019487212.unknown

_1019487214.unknown

_1019487215.unknown

_1019487213.unknown

_1019487210.unknown

_1019487211.unknown

_1019487209.unknown

_1019487204.unknown

_1019487206.unknown

_1019487207.unknown

_1019487205.unknown

_1019487200.unknown

_1019487202.unknown

_1019487203.unknown

_1019487201.unknown

_1019487198.unknown

_1019487199.unknown

_1019487196.unknown

_1019487197.unknown

_1019487195.unknown

_1019487194.unknown

