1. Overview

JavaServer Pages (JSP) lets you separate the dynamic part of your pages from the static HTML. You simply write the regular HTML in the normal manner, using whatever Web-page-building tools you normally use. You then enclose the code for the dynamic parts in special tags, most of which start with "<%" and end with "%>". For example, here is a section of a JSP page that results in something like "Thanks for ordering Core Web Programming" for a URL of http://host/OrderConfirmation.jsp?title=Core+Web+Programming:

Thanks for ordering

<I><%= request.getParameter("title") %></I>

You normally give your file a .jsp extension, and typically install it in any place you could place a normal Web page. Although what you write often looks more like a regular HTML file than a servlet, behind the scenes, the JSP page just gets converted to a normal servlet, with the static HTML simply being printed to the output stream associated with the servlet's service method. This is normally done the first time the page is requested, and developers can simply request the page themselves when first installing it if they want to be sure that the first real user doesn't get a momentary delay when the JSP page is translated to a servlet and the servlet is compiled and loaded. Note also that many Web servers let you define aliases that so that a URL that appears to reference an HTML file really points to a servlet or JSP page.

Aside from the regular HTML, there are three main types of JSP constructs that you embed in a page: scripting elements, directives, and actions. Scripting elements let you specify Java code that will become part of the resultant servlet, directives let you control the overall structure of the servlet, and actions let you specify existing components that should be used, and otherwise control the behavior of the JSP engine. To simplify the scripting elements, you have access to a number of predefined variables such as request in the snippet above.

Note that this tutorial covers version 1.0 of the JSP specification. JSP has changed dramatically since version 0.92, and although these changes were almost entirely for the better, you should note that version 1.0 JSP pages are almost totally incompatible with the earlier JSP engines.

2. Syntax Summary

	JSP Element
	Syntax
	Interpretation
	Notes

	JSP Expression
	<%= expression %>
	Expression is evaluated and placed in output.
	XML equivalent is
<jsp:expression>
expression</jsp:expression>.
Predefined variables are request, response, out, session, application, config, and pageContext (available in scriptlets also).

	JSP Scriptlet
	<% code %>
	Code is inserted in service method.
	XML equivalent is
<jsp:scriptlet>
code
</jsp:scriptlet>.

	JSP Declaration
	<%! code %>
	Code is inserted in body of servlet class, outside of service method.
	XML equivalent is
<jsp:declaration>
code
</jsp:declaration>.

	JSP page Directive
	<%@ page att="val" %>
	Directions to the servlet engine about general setup.
	XML equivalent is
<jsp:directive.page att="val"\>. Legal attributes, with default values in bold, are:

· import="package.class"

· contentType="MIME-Type"

· isThreadSafe="true|false"

· session="true|false"

· buffer="sizekb|none"

· autoflush="true|false"

· extends="package.class"

· info="message"

· errorPage="url"

· isErrorPage="true|false"

· language="java"

	JSP include Directive
	<%@ include file="url" %>
	A file on the local system to be included when the JSP page is translated into a servlet.
	XML equivalent is
<jsp:directive.include
 file="url"\>.
The URL must be a relative one. Use the jsp:include action to include a file at request time instead of translation time.

	JSP Comment
	<%-- comment --%>
	Comment; ignored when JSP page is translated into servlet.
	If you want a comment in the resultant HTML, use regular HTML comment syntax of <-- comment -->.

	The jsp:include Action
	<jsp:include

 page="relative URL"

 flush="true"/>
	Includes a file at the time the page is requested.
	If you want to include the file at the time the page is translated, use the page directive with the include attribute instead. Warning: on some servers, the included file must be an HTML file or JSP file, as determined by the server (usually based on the file extension).

	The jsp:useBean Action
	<jsp:useBean att=val*/> or
<jsp:useBean att=val*>
...
</jsp:useBean>
	Find or build a Java Bean.
	Possible attributes are:

· id="name"

· scope="page|request|session|application"

· class="package.class"

· type="package.class"

· beanName="package.class"

	The jsp:setProperty Action
	<jsp:setProperty att=val*/>
	Set bean properties, either explicitly or by designating that value comes from a request parameter.
	Legal attributes are

· name="beanName"

· property="propertyName|*"

· param="parameterName"

· value="val"

	The jsp:getProperty Action
	<jsp:getProperty

 name= "propertyName" value="val"/>
	Retrieve and output bean properties.
	

	The jsp:forward Action
	<jsp:forward

 page="relative URL"/>
	Forwards request to another page.
	

	The jsp:plugin Action
	<jsp:plugin

 attribute="value"*>

 ...

</jsp:plugin>
	Generates OBJECT or EMBED tags, as appropriate to the browser type, asking that an applet be run using the Java Plugin.
	

3. Template Text: Static HTML

In many cases, a large percent of your JSP page just consists of static HTML, known as template text. In all respects except one, this HTML looks just like normal HTML, follows all the same syntax rules, and is simply "passed through" to the client by the servlet created to handle the page. Not only does the HTML look normal, it can be created by whatever tools you already are using for building Web pages. For example, I used Allaire's HomeSite for most of the JSP pages in this tutorial.

The one minor exception to the "template text is passed straight through" rule is that, if you want to have "<%" in the output, you need to put "<\%" in the template text.

4. JSP Scripting Elements

JSP scripting elements let you insert Java code into the servlet that will be generated from the current JSP page. There are three forms:

1. Expressions of the form <%= expression %> that are evaluated and inserted into the output,

2. Scriptlets of the form <% code %> that are inserted into the servlet's service method, and

3. Declarations of the form <%! code %> that are inserted into the body of the servlet class, outside of any existing methods.

Each of these is described in more detail below.

4.1 JSP Expressions

A JSP expression is used to insert Java values directly into the output. It has the following form:

<%= Java Expression %>
The Java expression is evaluated, converted to a string, and inserted in the page. This evaluation is performed at run-time (when the page is requested), and thus has full access to information about the request. For example, the following shows the date/time that the page was requested:

Current time: <%= new java.util.Date() %>

To simplify these expressions, there are a number of predefined variables that you can use. These implicit objects are discussed in more detail later, but for the purpose of expressions, the most important ones are:

· request, the HttpServletRequest;

· response, the HttpServletResponse;

· session, the HttpSession associated with the request (if any); and

· out, the PrintWriter (a buffered version of type JspWriter) used to send output to the client.

Here's an example:

Your hostname: <%= request.getRemoteHost() %>

Finally, note that XML authors can use an alternative syntax for JSP expressions:

<jsp:expression>

Java Expression

</jsp:expression>

Remember that XML elements, unlike HTML ones, are case sensitive. So be sure to use lowercase.

4.2 JSP Scriptlets

If you want to do something more complex than insert a simple expression, JSP scriptlets let you insert arbitrary code into the servlet method that will be built to generate the page. Scriptlets have the following form:

<% Java Code %>
Scriptlets have access to the same automatically defined variables as expressions. So, for example, if you want output to appear in the resultant page, you would use the out variable.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

Note that code inside a scriptlet gets inserted exactly as written, and any static HTML (template text) before or after a scriptlet gets converted to print statements. This means that scriptlets need not contain complete Java statements, and blocks left open can affect the static HTML outside of the scriptlets. For example, the following JSP fragment, containing mixed template text and scriptlets

<% if (Math.random() < 0.5) { %>

Have a nice day!

<% } else { %>

Have a lousy day!

<% } %>

will get converted to something like:

if (Math.random() < 0.5) {

 out.println("Have a nice day!");

} else {

 out.println("Have a lousy day!");

}

If you want to use the characters "%>" inside a scriptlet, enter "%\>" instead. Finally, note that the XML equivalent of <% Code %> is

<jsp:scriptlet>

Code

</jsp:scriptlet>

4.3 JSP Declarations

A JSP declaration lets you define methods or fields that get inserted into the main body of the servlet class (outside of the service method processing the request). It has the following form:

<%! Java Code %>
Since declarations do not generate any output, they are normally used in conjunction with JSP expressions or scriptlets. For example, here is a JSP fragment that prints out the number of times the current page has been requested since the server booted (or the servlet class was changed and reloaded):

<%! private int accessCount = 0; %>

Accesses to page since server reboot:

<%= ++accessCount %>

As with scriptlets, if you want to use the characters "%>", enter "%\>" instead. Finally, note that the XML equivalent of <%! Code %> is

<jsp:declaration>

Code

</jsp:declaration>

5. JSP Directives

A JSP directive affects the overall structure of the servlet class. It usually has the following form:

<%@ directive attribute="value" %>
However, you can also combine multiple attribute settings for a single directive, as follows:

<%@ directive attribute1="value1"

 attribute2="value2"

 ...

 attributeN="valueN" %>
There are two main types of directive: page, which lets you do things like import classes, customize the servlet superclass, and the like; and include, which lets you insert a file into the servlet class at the time the JSP file is translated into a servlet. The specification also mentions the taglib directive, which is not supported in JSP version 1.0, but is intended to let JSP authors define their own tags. It is expected that this will be the main new contribution of JSP 1.1.

5.1 The JSP page Directive

The page directive lets you define one or more of the following case-sensitive attributes:

· import="package.class" or import="package.class1,...,package.classN". This lets you specify what packages should be imported. For example:
<%@ page import="java.util.*" %>
The import attribute is the only one that is allowed to appear multiple times.

· contentType="MIME-Type" or
contentType="MIME-Type; charset=Character-Set"
This specifies the MIME type of the output. The default is text/html. For example, the directive
<%@ page contentType="text/plain" %>
has the same effect as the scriptlet
<% response.setContentType("text/plain"); %>

· isThreadSafe="true|false". A value of true (the default) indicates normal servlet processing, where multiple requests can be processed simultaneously with a single servlet instance, under the assumption that the author synchronized access to instance variables. A value of false indicates that the servlet should implement SingleThreadModel, with requests either delivered serially or with simultaneous requests being given separate servlet instances.

· session="true|false". A value of true (the default) indicates that the predefined variable session (of type HttpSession) should be bound to the existing session if one exists, otherwise a new session should be created and bound to it. A value of false indicates that no sessions will be used, and attempts to access the variable session will result in errors at the time the JSP page is translated into a servlet.

· buffer="sizekb|none". This specifies the buffer size for the JspWriter out. The default is server-specific, but must be at least 8kb.

· autoflush="true|false". A value of true, the default, indicates that the buffer should be flushed when it is full. A value of false, rarely used, indicates that an exception should be thrown when the buffer overflows. A value of false is illegal when also using buffer="none".

· extends="package.class". This indicates the superclass of servlet that will be generated. Use this with extreme caution, since the server may be using a custom superclass already.

· info="message". This defines a string that can be retrieved via the getServletInfo method.

· errorPage="url". This specifies a JSP page that should process any Throwables thrown but not caught in the current page.

· isErrorPage="true|false". This indicates whether or not the current page can act as the error page for another JSP page. The default is false.

· language="java". At some point, this is intended to specify the underlying language being used. For now, don't bother with this since java is both the default and the only legal choice.

The XML syntax for defining directives is

<jsp:directive.directiveType attribute=value />

For example, the XML equivalent of

<%@ page import="java.util.*" %>

is

<jsp:directive.page import="java.util.*" />

5.2 The JSP include Directive

This directive lets you include files at the time the JSP page is translated into a servlet. The directive looks like this:

<%@ include file="relative url" %>

The URL specified is normally interpreted relative to the JSP page that refers to it, but, as with relative URLs in general, you can tell the system to interpret the URL relative to the home directory of the Web server by starting the URL with a forward slash. The contents of the included file are parsed as regular JSP text, and thus can include static HTML, scripting elements, directives, and actions.

For example, many sites include a small navigation bar on each page. Due to problems with HTML frames, this is usually implemented by way of a small table across the top of the page or down the left-hand side, with the HTML repeated for each page in the site. The include directive is a natural way of doing this, saving the developers from the maintenance nightmare of actually copying the HTML into each separate file. Here's some representative code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Servlet Tutorial: JavaServer Pages (JSP) 1.0</TITLE>

<META NAME="author" CONTENT="webmaster@somesite.com">

<META NAME="keywords" CONTENT="...">

<META NAME="description" CONTENT="...">

<LINK REL=STYLESHEET HREF="Site-Styles.css" TYPE="text/css">

</HEAD>

<BODY>

<%@ include file="/navbar.html" %>
<!-- Part specific to this page ... -->

</BODY>

</HTML>

Note that since the include directive inserts the files at the time the page is translated, if the navigation bar changes, you need to re-translate all the JSP pages that refer to it. This is a good compromise in a situation like this, since the navigation bar probably changes infrequently, and you want the inclusion process to be as efficient as possible. If, however, the included files changed more often, you could use the jsp:include action instead. This includes the file at the time the JSP page is requested, and is discussed in the tutorial section on JSP actions.

6. Example Using Scripting Elements and Directives

Here is a simple example showing the use of JSP expressions, scriptlets, declarations, and directives. You can also download the source or try it on-line.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using JavaServer Pages</TITLE>

<META NAME="author" CONTENT="Marty Hall -- hall@apl.jhu.edu">

<META NAME="keywords"

 CONTENT="JSP,JavaServer Pages,servlets">

<META NAME="description"

 CONTENT="A quick example of the four main JSP tags.">

<LINK REL=STYLESHEET

 HREF="My-Style-Sheet.css"

 TYPE="text/css">

</HEAD>

<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"

 VLINK="#551A8B" ALINK="#FF0000">

<CENTER>

<TABLE BORDER=5 BGCOLOR="#EF8429">

 <TR><TH CLASS="TITLE">

 Using JavaServer Pages</TABLE>

</CENTER>

<P>

Some dynamic content created using various JSP mechanisms:

 Expression.

 Your hostname: <%= request.getRemoteHost() %>.

 Scriptlet.

 <% out.println("Attached GET data: " +

 request.getQueryString()); %>

 Declaration (plus expression).

 <%! private int accessCount = 0; %>

 Accesses to page since server reboot: <%= ++accessCount %>

 Directive (plus expression).

 <%@ page import = "java.util.*" %>

 Current date: <%= new Date() %>

</BODY>

</HTML>

Here's a typical result:

7. Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight automatically defined variables, sometimes called implicit objects. The available variables are request, response, out, session, application, config, pageContext, and page. Details for each are given below.

7.1 request

This is the HttpServletRequest associated with the request, and lets you look at the request parameters (via getParameter), the request type (GET, POST, HEAD, etc.), and the incoming HTTP headers (cookies, Referer, etc.). Strictly speaking, request is allowed to be a subclass of ServletRequest other than HttpServletRequest, if the protocol in the request is something other than HTTP. This is almost never done in practice.

7.2 response

This is the HttpServletResponse associated with the response to the client. Note that, since the output stream (see out below) is buffered, it is legal to set HTTP status codes and response headers, even though this is not permitted in regular servlets once any output has been sent to the client.

7.3 out

This is the PrintWriter used to send output to the client. However, in order to make the response object (see the previous section) useful, this is a buffered version of PrintWriter called JspWriter. Note that you can adjust the buffer size, or even turn buffering off, through use of the buffer attribute of the page directive. This was discussed in Section 5. Also note that out is used almost exclusively in scriptlets, since JSP expressions automatically get placed in the output stream, and thus rarely need to refer to out explicitly.

7.4 session

This is the HttpSession object associated with the request. Recall that sessions are created automatically, so this variable is bound even if there was no incoming session reference. The one exception is if you use the session attribute of the page directive (see Section 5) to turn sessions off, in which case attempts to reference the session variable cause errors at the time the JSP page is translated into a servlet.

7.5 application

This is the ServletContext as obtained via getServletConfig().getContext().

7.6 config

This is the ServletConfig object for this page.

7.7 pageContext

JSP introduced a new class called PageContext to encapsulate use of server-specific features like higher performance JspWriters. The idea is that, if you access them through this class rather than directly, your code will still run on "regular" servlet/JSP engines.

7.8 page

This is simply a synonym for this, and is not very useful in Java. It was created as a placeholder for the time when the scripting language could be something other than Java.

8. Actions

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can dynamically insert a file, reuse JavaBeans components, forward the user to another page, or generate HTML for the Java plugin. Available actions include:

· jsp:include - Include a file at the time the page is requested. See Section 8.1.

· jsp:useBean - Find or instantiate a JavaBean. See Section 8.2 for an overview, and Section 8.3 for details.

· jsp:setProperty - Set the property of a JavaBean. See Section 8.4.

· jsp:getProperty - Insert the property of a JavaBean into the output. See Section 8.5.

· jsp:forward - Forward the requester to a new page. See Section 8.6.

· jsp:plugin - Generate browser-specific code that makes an OBJECT or EMBED tag for the Java plugin. See Section 8.7.

These actions are described in more detail below. Remember that, as with XML in general, the element and attribute names are case sensitive.

8.1 The jsp:include Action

This action lets you insert files into the page being generated. The syntax looks like this:

<jsp:include page="relative URL" flush="true" />

Unlike the include directive, which inserts the file at the time the JSP page is translated into a servlet, this action inserts the file at the time the page is requested. This pays a small penalty in efficiency, and precludes the included page from containing general JSP code (it cannot set HTTP headers, for example), but it gains significantly in flexibility. For example, here is a JSP page that inserts four different snippets into a "What's New?" Web page. Each time the headlines change, authors only need to update the four files, but can leave the main JSP page unchanged.

WhatsNew.jsp

You can also download the source or try it on-line.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>What's New</TITLE>

<LINK REL=STYLESHEET

 HREF="My-Style-Sheet.css"

 TYPE="text/css">

</HEAD>

<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"

 VLINK="#551A8B" ALINK="#FF0000">

<CENTER>

<TABLE BORDER=5 BGCOLOR="#EF8429">

 <TR><TH CLASS="TITLE">

 What's New at JspNews.com</TABLE>

</CENTER>

<P>

Here is a summary of our four most recent news stories:

 <jsp:include page="news/Item1.html" flush="true"/>

 <jsp:include page="news/Item2.html" flush="true"/>

 <jsp:include page="news/Item3.html" flush="true"/>

 <jsp:include page="news/Item4.html" flush="true"/>

</BODY>

</HTML>

Here's a typical result:

8.2 The jsp:useBean Action

This action lets you load in a JavaBean to be used in the JSP page. This is a a very useful capability because it lets you exploit the reusability of Java classes without sacrificing the convenience that JSP adds over servlets alone. The simplest syntax for specifying that a bean should be used is:

<jsp:useBean id="name" class="package.class" />

This usually means "instantiate an object of the class specified by class, and bind it to a variable with the name specified by id." However, as we'll see shortly, you can specify a scope attribute that makes the bean associated with more than just the current page. In that case, it is useful to obtain references to existing beans, and the jsp:useBean action specifies that a new object is instantiated only if there is no existing one with the same id and scope. Now, once you have a bean, you can modify its properties via jsp:setProperty, or by using a scriptlet and calling a method explicitly on the object with the variable name specified earlier via the id attribute. Recall that with beans, when you say "this bean has a property of typeX called foo", you really mean "this class has a method called getFoo that returns something of type X, and another method called setFoo that takes an X as an argument." The jsp:setProperty action is discussed in more detail in the next section, but for now note that you can either supply an explicit value, give a param attribute to say that the value is derived from the named request parameter, or just list the property to indicate that the value should be derived from the request parameter with the same name as the property. You read existing properties in a JSP expression or scriptlet by calling the appropriate getXxx method, or more commonly, by using the jsp:getProperty action.

Note that the class specified for the bean must be in the server's regular class path, not the part reserved for classes that get automatically reloaded when they change. For example, in the Java Web Server, it and all the classes it uses should go in the classes directory or be in a jar file in the lib directory, not be in the servlets directory.

Here is a very simple example that loads a bean and sets/gets a simple String parameter.

BeanTest.jsp

You can also download the source or try it on-line.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Reusing JavaBeans in JSP</TITLE>

<LINK REL=STYLESHEET

 HREF="My-Style-Sheet.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">

 Reusing JavaBeans in JSP</TABLE>

</CENTER>

<P>

<jsp:useBean id="test" class="hall.SimpleBean" />

<jsp:setProperty name="test"

 property="message"

 value="Hello WWW" />
<H1>Message: <I>

<jsp:getProperty name="test" property="message" />
</I></H1>

</BODY>

</HTML>

SimpleBean.java

Here's the source code for the bean used in the BeanTest JSP page. You can also download the source.

package hall;

public class SimpleBean {

 private String message = "No message specified";

 public String getMessage() {

 return(message);

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

Here's a typical result:

8.3 More jsp:useBean Details

The simplest way to use a bean is to use
 <jsp:useBean id="name" class="package.class" />
to load the bean, then use jsp:setProperty and jsp:getProperty to modify and retrieve bean properties. However, there are two other options. First, you can use the container format, namely
 <jsp:useBean ...>
 Body
 </jsp:useBean>
to indicate that the Body portion should be executed only when the bean is first instantiated, not when an existing bean is found and used. As discussed below, beans can be shared, so not all jsp:useBean statements result in a new bean being instantiated. Second, in addition to id and class, there are three other attributes that you can use: scope, type, and beanName. These attributes are summarized in the following table.

	Atribute
	Usage

	id
	Gives a name to the variable that will reference the bean. A previous bean object is used instead of instantiating a new one if one can be found with the same id and scope.

	class
	Designates the full package name of the bean.

	scope
	Indicates the context in which the bean should be made available. There are four possible values: page, request, session, and application. The default, page, indicates that the bean is only available on the current page (stored in the PageContext of the current page). A value of request indicates that the bean is only available for the current client request (stored in the ServletRequest object). A value of session indicates that the object is available to all pages during the life of the current HttpSession. Finally, a value of application indicates that it is available to all pages that share the same ServletContext. The reason that the scope matters is that a jsp:useBean entry will only result in a new object being instantiated if there is no previous object with the same id and scope. Otherwise the previously existing object is used, and any jsp:setParameter elements or other entries between the jsp:useBean start and end tags will be ignored.

	type
	Specifies the type of the variable that will refer to the object. This must match the classname or be a superclass or an interface that the class implements. Remember that the name of the variable is designated via the id attribute.

	beanName
	Gives the name of the bean, as you would supply it to the instantiate method of Beans. It is permissible to supply a type and a beanName, and omit the class attribute.

8.4 The jsp:setProperty Action

You use jsp:setProperty to give values to properties of beans that have been referenced earlier. You can do this in two contexts. First, you can use jsp:setProperty after, but outside of, a jsp:useBean element, as below:

<jsp:useBean id="myName" ... />

...

<jsp:setProperty name="myName"

 property="someProperty" ... />

In this case, the jsp:setProperty is executed regardless of whether a new bean was instantiated or an existing bean was found. A second context in which jsp:setProperty can appear is inside the body of a jsp:useBean element, as below:

<jsp:useBean id="myName" ... >

 ...

 <jsp:setProperty name="myName"

 property="someProperty" ... />

</jsp:useBean>

Here, the jsp:setProperty is executed only if a new object was instantiated, not if an existing one was found.

There are four possible attributes of jsp:setProperty:

	Attribute
	Usage

	name
	This required attribute designates the bean whose property will be set. The jsp:useBean element must appear before the jsp:setProperty element.

	property
	This required attribute indicates the property you want to set. However, there is one special case: a value of "*" means that all request parameters whose names match bean property names will be passed to the appropriate setter methods.

	value
	This optional attribute specifies the value for the property. String values are automatically converted to numbers, boolean, Boolean, byte, Byte, char, and Character via the standard valueOf method in the target or wrapper class. For example, a value of "true" for a boolean or Boolean property will be converted via Boolean.valueOf, and a value of "42" for an int or Integer property will be converted via Integer.valueOf. You can't use both value and param, but it is permissible to use neither. See the discussion of param below.

	param
	This optional attribute designates the request parameter from which the property should be derived. If the current request has no such parameter, nothing is done: the system does not pass null to the setter method of the property. Thus, you can let the bean itself supply default values, overriding them only when the request parameters say to do so. For example, the following snippet says "set the numberOfItems property to whatever the value of the numItems request parameter is, if there is such a request parameter. Otherwise don't do anything."

<jsp:setProperty name="orderBean"

 property="numberOfItems"

 param="numItems" />

If you omit both value and param, it is the same as if you supplied a param name that matches the property name. You can take this idea of automatically using the request property whose name matches the property one step further by supplying a property name of "*" and omitting both value and param. In this case, the server iterates through available properties and request parameters, matching up ones with identical names.

Here's an example that uses a bean to create a table of prime numbers. If there is a parameter named numDigits in the request data, it is passed into the bean's numDigits property. Likewise for numPrimes.

JspPrimes.jsp

To download the JSP source, right click on the source code link. You can also download the source code for the NumberedPrimes bean referenced by the jsp:useBean element. Browse the source code directory for other Java classes used by NumberedPrimes. The best way to try it out on-line is to start with the HTML page that acts as a front end to it.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Reusing JavaBeans in JSP</TITLE>

<LINK REL=STYLESHEET

 HREF="My-Style-Sheet.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">

 Reusing JavaBeans in JSP</TABLE>

</CENTER>

<P>

<jsp:useBean id="primeTable" class="hall.NumberedPrimes" />

<jsp:setProperty name="primeTable" property="numDigits" />

<jsp:setProperty name="primeTable" property="numPrimes" />
Some <jsp:getProperty name="primeTable" property="numDigits" />

digit primes:

<jsp:getProperty name="primeTable" property="numberedList" />

</BODY>

</HTML>

Here's a typical result:

8.5 The jsp:getProperty Action

This element retrieves the value of a bean property, converts it to a string, and inserts it into the output. The two required attributes are name, the name of a bean previously referenced via jsp:useBean, and property, the property whose value should be inserted. Here's an example; for more examples, see Sections 8.2 and 8.4.

<jsp:useBean id="itemBean" ... />

...

 Number of items:

 <jsp:getProperty name="itemBean" property="numItems" />
 Cost of each:

 <jsp:getProperty name="itemBean" property="unitCost" />

8.6 The jsp:forward Action

This action lets you forward the request to another page. It has a single attribute, page, which should consist of a relative URL. This could be a static value, or could be computed at request time, as in the two examples below.

<jsp:forward page="/utils/errorReporter.jsp" />

<jsp:forward page="<%= someJavaExpression %>" />

8.7 The jsp:plugin Action

This action lets you insert the browser-specific OBJECT or EMBED element needed to specify that the browser run an applet using the Java plugin.

9. Comments and Character Quoting Conventions

There are a small number of special constructs you can use in various cases to insert comments or characters that would otherwise be treated specially. Here's a summary:

	Syntax
	Purpose

	<%-- comment --%>
	A JSP comment. Ignored by JSP-to-scriptlet translator. Any embedded JSP scripting elements, directives, or actions are ignored.

	<!-- comment -->
	An HTML comment. Passed through to resultant HTML. Any embedded JSP scripting elements, directives, or actions are executed normally.

	<\%
	Used in template text (static HTML) where you really want "<%".

	%\>
	Used in scripting elements where you really want "%>".

	\'
	A single quote in an attribute that uses single quotes. Remember, however, that you can use either single or double quotes, and the other type of quote will then be a regular character.

	\"
	A double quote in an attribute that uses double quotes. Remember, however, that you can use either single or double quotes, and the other type of quote will then be a regular character.

	%\>
	%> in an attribute.

	<\%
	<% in an attribute.

JavaServer Pages, Introduction to JSP

by Richard G. Baldwin
baldwin@austin.cc.tx.us

Java Programming, Lecture Notes # 750.

May 15, 2000

· Introduction

· A First Look at JSP

· Tell Me More

· Getting Started

· Installation and Setup

· Starting and Stopping the Server

· Accessing HTML and JSP Files

· Sample HTML and JSP Files

· Accessing Servlet Files

Introduction

Plain servlets

Other lessons in this online Tutorial series teach you how to write and execute Java servlets that generate HTML text and cause that text to be sent to a web browser. Writing the code to produce the HTML text in servlets is often very tedious, and is not a fun thing to do.

What is JSP?

JSP makes it possible for you to encode fragments of Java code into special HTML tags.

JSP engine creates a servlet

When the HTML page containing the Java code fragments is presented to a JSP engine, the JSP engine automatically creates, compiles, and executes servlets to implement the behavior of the HTML and the embedded Java code.

For certain kinds of applications, this is a less-tedious approach than writing servlets to generate the HTML.

How do they differ?

The JSP approach is almost exactly the opposite of the approach where you write and compile the servlet.

In that approach, you can write servlets that automatically generate HTML “on the fly” when they execute.

With JSP, you can write HTML containing embedded Java that automatically generates and executes a servlet.

JSP can become very complex

Of course, if you aren't careful, it is possible to cause your HTML page containing embedded Java code to become extremely complex. Debugging such a page tends to be more difficult for me than debugging a pure Java program.

The best of both worlds

The best of both worlds can be achieved by using the embedded Java code fragments to execute Java Beans or other servlets.

With this combination approach, you can keep the HTML page relatively simple. You can also separate functionality on your HTML page.

Similar to MVC

One way to look at this is to view it in a Model View Control (MVC) paradigm sense.

In this case, the bean approximates the model while the HTML page approximates a combination of the control and the view. (If you aren't familiar with the MVC paradigm, see the Tutorial lesson where I discuss MVC.)

Combining HTML and reusable Java

Thus, the judicious use of JSP makes it possible to combine the best of HTML and reusable Java software components for server-side applications.

What's in this lesson?

In this lesson, I will introduce you to JavaServer (TM) Pages by way of a very simple JSP file.

I will also show you how to download, install, and configure the JavaServer Web Development Kit (JSWDK) from Sun.

I will provide you with a couple of sample files that you can use to confirm proper installation and configuration of the JSWDK on your machine.

What about future lessons?

I will be using the JSWDK for demonstration purposes in several future lessons where I will discuss various aspects of JSP.

A First Look at JSP

To get started, I am going to show you a very simple JavaServer Page or JSP file (see Figure 1). I am assuming that you already have a rudimentary knowledge of HTML. If not, there are dozens of good HTML tutorials available on the web.

What does this file do?

If you install this file on a JSP-compatible web server and access it with your browser, an output very similar to that shown in Figure 2 will appear in your browser window.

First access may be slow

The first time you access a JSP file, there may be a slight pause while the server automatically creates, compiles, and executes a servlet representing the page.

If you then force a reload, the results should appear much more quickly the second time due to the fact that the corresponding servlet already exists on the web server in executable form.

Where's the Java?

This JSP file contains only one Java code fragment as shown in .
Figure 3

I have highlighted (in boldface) the special HTML tags that surround the Java code (although depending on your display, that might not be apparent). I will be discussing these tags at some length in subsequent lessons.

A Java for loop

As you can probably surmise from your prior knowledge of Java, this code fragment executes a for loop. Exactly what happens inside the for loop won't become clear until later when I discuss the line of HTML code that reads

	<%= i %>

Tell Me More

JavaServer Pages (JSP) are based on servlet technology. When combined with the use of JavaBean components, JSP promises to provide a capability that is at least as powerful as servlets, possibly more powerful than raw servlets, and potentially much easier to use.

Each technology does what it does best

JSP makes it possible for you to combine Java code with either HTML or XML in such a way as to allow each technology to be used for what it does best.

Creation and compilation of the servlet is automatic

Each JSP page is automatically compiled into a servlet by the JSP engine. (You can only use JSP on web servers that are JSP compatible.)

Occurs on first access

The automatic creation and compilation of the servlet occurs the first time the page is accessed. Depending on the behavior of the web server, the servlet will be saved for some period of time to be used over and over without the need to recreate and recompile it.

May be a pause on first access

Thus, the first time the page is accessed, there may be a pause while the web server creates and compiles the servlet. After that, access to the page should be much faster.

How are JavaServer Pages used?

There are many different ways in which you can combine JSP, beans, and servlets.

As mentioned earlier, the judicious use of JSP makes it possible to combine the best capabilities of HTML and reusable software components for server-side applications.

Separating business logic from presentation

This makes it practical to separate the business logic from the presentation of data.

Hence, programmers who are skilled in writing Java Beans can provide reusable software components that implement the business logic.

Page designers skilled in HTML can embed calls to those beans in HTML without the need to become skilled Java programmers.

Getting Started

I recommend that you to study Java with my tutorials in one hand and a Java compiler and virtual machine in the other. Then you can copy, compile and execute the sample programs and produce your own outputs as you study.

Needed, one JSP server

As is the case with servlets and JDBC, to test your JSP files, you will need more than a Java compiler and virtual machine.

In addition to those items, you will need a JSP-compatible web server in which to test your sample programs.

As of February 6, 2000, such a web server is available free of charge from Sun. You can download the server at

http://java.sun.com/products/jsp/
download.html.

Here is what Sun has to say about the downloadable web server:

	JavaServer (TM) Web Development Kit (JSWDK) 1.0.1 Reference Implementation - Final Release

The JavaServer Web Development Kit (JSWDK)1.0.1 combines the reference implementation for JavaServer Pages(TM) 1.0.1 and the Java(TM) Servlet API (2.1). ...

The JSWDK offers a simplified way of creating dynamic web pages that are independent of Web servers and computing platforms, giving you Write Once, Run Anywhere(TM) freedom. The JSWDK is available at no charge.

Installation and Setup

Quick-start instructions

When you download the JSWDK, you will find that quite a lot of documentation is provided to help you to install and set up the server. At some point, you should read that documentation.

However, to get you off to a quick start, I am going to tell you how I have the server set up on my WinNT machine. You should be able to set it up in a similar manner on your machine and see your first demonstration of JSP very quickly. After that, you might want to go back and customize your installation.

Installation of the JSWDK

The JSWDK is downloaded as a zip file. To install it, you simply extract the files (while preserving the directory structure) from the zip file.

Place the directory tree containing all of the files somewhere on your hard drive. I elected to place the directory tree on my D-drive under the directory named Program Files.

My path to the JSWDK

As a result, my path to the top-level directory containing the JSWDK directory tree is:

d:\Program Files\jswdk-1.0.1

The name of the top-level directory in the directory tree is jswdk-1.0.1. Over time, as new versions are released, the name of this directory can be expected to change.

What about the JDK?

When you use your browser to request a JSP page from the server, it must create and compile a servlet.

The jswdk server does not contain a compiler and virtual machine. Therefore, if you haven't done so already, you will need to install the JDK that the server will use to compile and execute the servlet.

My path to the JDK

At the time of this writing, I have JDK 1.2.2 from Sun installed on my machine. The path to the top-level directory containing the JDK is:

d:\Program Files\jdk1.2.2

My JDK installation is completely standard (as per Sun) except that I have it installed on drive-D instead of drive-C.

What about the classpath?

When the server attempts to compile the servlet, it must know how to locate the class files for the JDK.

Therefore, a classpath environment variable is necessary. Because of other Java software that I have installed on my machine, my classpath is long and complex. Therefore, to avoid the risk of confusion, I won't show you the entire classpath.

The standard JDK class libraries

Suffice it to say that one of the elements in the classpath is as shown below:

d:\Program Files\jdk1.2.2\lib\tools.jar

This element identifies the location of the jar file containing the standard class libraries for the JDK.

Classpath for servlets

Because I also use the JSWDK as a servlet engine (independent of JSP), I also need the following element in the classpath. You will probably need a similar element in your classpath.

d:\Program Files\jswdk-1.0.1\lib\
servlet.jar

This element identifies the location of the jar file containing the various software components necessary to compile and execute servlets.

Pretty simple, isn't it?

That's really about all there is to installing the JSWDK and getting it ready for use. Of course, you will need to have the path environment variable set properly for the JDK, but that has nothing to do with the JSWDK.

Installing HTML, JSP, and Servlet Files

Once you install the JSWDK, you will see that the resulting directory tree is fairly complex with several different branches.

An examination of the documentation will tell you that you can configure the JSWDK in various ways insofar as where you place HTML files, JSP Files, and servlet files.

The default configuration

However, you can use the JSWDK right out of the zip file with no special configuration required.

To use the JSWDK in its default configuration, install your HTML files, JSP files, and servlet files in the directories shown below.

	Place HTML and JSP files in the following directory

d:\Program Files\jswdk-1.0.1\
webpages

Place servlet class files in the following directory

d:\Program Files\jswdk-1.0.1\
examples\Web-inf\servlets

(The beginning portion of your path will probably be different, depending on where you place the JSWDK on your hard drive).

Starting and Stopping the Server

You can start the server running by executing the following batch file:

d:\Program Files\jswdk-1.0.1\
startserver.bat

You should stop the server by executing the following batch file:

d:\Program Files\jswdk-1.0.1\
stopserver.bat

I placed shortcuts to these two batch files on my desktop to make it easy to start and stop the server.

Temporary files

When you start the server and access a JSP page, if you pay attention to the directory tree, you will notice that several temporary files are created and placed in a directory named work. This directory is a subdirectory of the top-level directory named jswdk-1.0.1.

When you stop the server by executing the above batch file, these temporary files are automatically deleted.

Accessing HTML and JSP Files

Accessing a JSP file

Having performed the installation and setup described above, and having installed a JSP file (named jsp001.jsp) as described above, you should be able to access that JSP file by entering the following URL into your browser window. (I will provide a sample file named jsp001.jsp below for you to use.)

http://localhost:8080/jsp001.jsp

You may need to be online for this to work. In case this doesn't work, you will need to study the JSWDK documentation to learn about alternative ways to address the server.

If you are unfamiliar with the use of the term localhost, you might want to do a little research on the web regarding that term. There is also some information on the subject in my online Tutorials.

Accessing an HTML file

Similarly, you should be able to access an HTML file named jsp001.htm by entering the following into your browser window

http://localhost:8080/jsp001.htm

Sample HTML and JSP Files

A sample HTML file and a sample JSP file follow. You should be able to

· Paste them into your text editor,

· Name them jsp001.htm and jsp001.jsp respectively, and

· Install them in the web server as described above.

Then you should be able to access the HTML file as described above.

A link to the JSP file

When the HTML file is displayed in your browser window, it will contain a link to the JSP file.

Selecting that link should access the JSP file.

Executing the JSP file

This will, in turn, cause the server to create and execute a servlet and deliver the results of executing that servlet to your browser window.

The raw HTML file

The contents of the raw HTML file are shown in Figure 4. Note that the text in the HTML file contains a lot of explanatory material.

The HTML results

When you access the above HTML file via your browser as described earlier, the result displayed in your browser window will be similar to that shown in Figure 5.

The links

Note that the underlined blue text is not a real link in Figure 5, but it will be a real link in your browser window.

Pay particular attention the link in the first paragraph. I will be referring to it later.

The raw JSP file

The contents of the raw JSP file are shown in Figure 6.

I will discuss the particulars of this file in a future lesson. The purpose of this lesson is simply to give you an overview and to help you get your server set up so that you can write and execute JSP files. The discussion of programming details will be deferred until later.

The JSP results

Clicking the link shown in the first paragraph in your browser window

(http://localhost:8080/jsp001.jsp)

when the above HTML file is displayed will cause the above JSP file to be loaded by the web server. This, in turn will cause the servlet to be created, compiled and executed.

Execution of the servlet will then cause results similar to that shown in Figure 2 to appear on your browser screen.

Accessing Servlet Files

This lesson really has anything to do with servlets in the absence of JSP, but the JSWDK is also useful as a servlet engine.

While you are at it, you might as well make certain that you have it properly set up for the execution of servlets that you write.

Having performed the installation and setup described above, and having installed a servlet class file named Servlet01.class in the directory identified described above, you should be able to access that servlet file by entering the following URL into your browser window.

http://localhost:8080/examples/
servlet/Servlet01

Source code for a servlet

The source code for a simple servlet is shown in Figure 7. You should be able to

· Compile this servlet,

· Install the class file in the proper directory of the JSWDK as described earlier, and

· Access the servlet as discussed above.

Hello Big Red World

When you do, the words "Hello Big Red World" should appear in red in your browser window.

If you aren't familiar with servlet programming, I have previously written a large number of lessons on servlet programming in my online Java Tutorials that you can refer to in order to gain an understanding of the code in this servlet.

On-Line Resources
Like any other technological innovation, JavaBeans is subject to constant change. One of the best ways to keep up with these changes is through on-line resources. You may already be a regular visitor to sites that provide the latest in technology and new developments. In this appendix we have gathered a number of useful resources specifically for JavaBeans and the technology surrounding it such as IIOP and development tools.

JavaBeans on JavaSoft
http://splash.javasoft.com/beans
This is the ultimate resource for JavaBeans. You will find the latest announcements and Bean information here. In addition, there are links to many related documents, and software is available for download. You can download the Bean Development Kit and ActiveX bridges from this site as well. A few other interesting features are the JavaBeans Advisor and the list of FAQs.

Gamelan
http://www.gamelan.com
Gamelan has established itself as a great resource for Java developers. Its Web site has a section dedicated to JavaBeans where you will find links to documentation and tutorials as well as a number of Beans you can download and examine.

JavaBeans Newsgroup
comp.lang.java.beans
In this newsgroup dedicated to discussions on JavaBeans. Traffic is not as high as some of the other Java newsgroups, but you can interact with others who may be trying to solve problems similar to yours.

JavaWorld
http://www.javaworld.com
JavaWorld is a monthly on-line magazine that has recently added several columns that cover JavaBeans. The magazine features a variety of articles including technology overviews and step-by-step instructions for developing Java applications as well as some very good in-depth articles about Java and Bean technologies.

Java Developer Web Site
http://www.digitalfocus.com/faq
This site is a comprehensive resource for Java, including JavaBeans. Its unique How do I do X format makes it easy to locate the information you are looking for. Submissions are made by Java developers from around the world. There is a wealth of other information there as well.

JBuilder
http://www.borland.com
JBuilder is a Java development tool from Borland International. The tool has full support for design and development of JavaBeans.

VisualAge
http://www.ibm.com
This Java development tool from IBM is geared toward using Java in the enterprise. The early reviews have been very good, and the tools have full support for JavaBeans.

Visual Café
http://www.symantec.com
Café was one of the first Java development tools on the market. Visual Café enhanced the environment by introducing a drag-and-drop approach to application design that allows developers to put together components to create Java applications. Sounds similar to JavaBeans, doesn’t it? Well, at that time, there were no JavaBeans. The new version of Visual Café supports JavaBeans, so if you are used to that environment, it is well worth the upgrade.

Java Workshop
http://www.sun.com
Java Workshop is a Java development environment written in Java. The latest version supports Beans. Performance is a bit slow on some machines, but the environment is nicely organized, and more importantly, the tool is written entirely in Java.

JavaBeans FAQ
http://lupo.on.ca/beans/JBFAQ.html
This is an unofficial FAQ for JavaBeans maintained by James Lynn. It is well organized and has answers to very specific Bean-related questions.

