Documenting JSP

John Wang 5/26/2000

Purpose: Documentation is a vital part of software development. Because of the heavy involvement of JSP in Webvision’s projects, simplification and standardization of documenting process for JSP is critical for Webvision engineers to delivering quality products.

The fundamental design of JSP makes the development faster and easy. However, it couldn’t benefit from the traditional documentation tool—Javadoc. Even worse, there isn’t any available documentation tool specifically designed for JSP. However, proper embedded document (comment) is still vital for further development and maintenance. Although you can always include HTML comments (<!-- HTML comment -->) in your files, users can view these if they view the page's source. If you don't want users to be able to see your comments, you would embed them within the <% /** comment for server side only */%> tag. For instance, a sample of the header comment (placed at the very beginning of all JSP pages) is as the following:
<%

/**

* JSP Program: Carday.jsp

* Author: John Wang

*

* Purpose: …

*

* Usages: …

*

* DISCLAIMER

* Copyright 2000, Webvision, Inc. All rights reserved.

* US and foreign patents and trademarks pending.

* Confidential internal document.

* @version 1.0
*/

%>

Note: The hidden comment specified in the JavaServer Page spec actually is <%- - comment --%>. However, to be consistent with regular Java embedded style, <%/** comment */%> is used. Since the JSP engine will automatically skip “/** comment */”, this style have the same hidden comment effect.

This architecture clearly separates Java code from HTML presentation. The only useful Java code concerns access to bean properties. This architecture enables reproduction of the MVC model (Model/View/Controller). The JSP is considered the view, the model is represented by the bean and the controller is represented by the servlet.
The servlet plays an important role in this architecture because it takes care of parameter retrieval, instantiation, and bean handling; but it can also handle transfers to different JSPs in terms of user type, carry out processing in relation to user actions, etc. All of these features remain in the domain of the Java developer.
Obviously, this architecture is more costly in terms of response time, but it offers better separation of the user interface (in this case, the JSP handles presentation only) with regard to processing.

However, the current architecture design of the Webvision’s projects use minimal servlets. JSP are used to receive http request and to generate http response, a dual role as view and controller. Some unmatured business logic still stay in the JSP instead of Java Beans. If possible, the JSP should serve as a glue language to facilitate linkage between presentation tier and business logic, never try to put bulky, heavy coding block in a JSP. Most business logic (especially reusable components) should be packed into component block (regular Java Beans or enterprise Java Beans).

Appendix C: Java Programming Guidelines
2

