Usage of Javadoc Wizard in Jbuilder3

John Wang February 28, 2000

Purpose: The Javadoc wizard (Hereon in this document, unless specifically mentioned, the Javadoc means the Javadoc Wizard in Jbuilder3) helps you create customized API documentation for your application. This wizard lets you specify documentation generation options through the JBuilder user interface, then calls Sun's Javadoc utility. The utility examines all the .java sources in your package and generates corresponding documentation, in HTML format, for each declaration. If your source files contain specially formatted Javadoc comments, these comments are merged with standard HTML tags into the resulting documentation file.

It’s strongly recommended that all Java developers use the Javadoc Wizard to document all the Java code in consistent format.

To run the Javadoc wizard, open your project then choose Wizards|Javadoc.

You can run the Javadoc as often as you want on the classes of your application. Each time, the Javadoc will examine the .java source files and regenerate new HTML documentation files. Javadoc itself uses javac to process the source files. Therefore, the source files you want documentation generated for must compile successfully in order for its documentation to be generated. (*: Always save the file first before executing javadoc.)

This wizard contains these tabbed pages: Standard Options, Advanced Options, Output.

(*: Remove spaces in the directory names to avoid difficulties with this wizard.)

Root Package To Document

This is the root location from which source files (the package(s) for the Javadoc to process) will be scanned for documentation comments. You may enter as many packages as you want. If you enter only one package, the wizard will build up the list of packages for Javadoc to process from the package specified in this field. All subpackages beneath this root will also be scanned if not listed in the Omit Sub-Packages field. To document only one package and ignore all sub-packages, place a semi-colon and the end of your package.

If you enter more than one package, Javadoc will process only the packages listed and the Omit Sub-packages field will be ignored.

Omit Sub-Packages: Exclude Javadoc from processing of any classes in that subpackage. This field is ignored if you enter more than one package in the Root Package To Document field, in which case, Javadoc will process only the specified packages.

HTML Output Directory: The output location for the HTML documentation files.

*: The output directory should be in the docpath used by your project. You can check this from the Available Java Libraries (Project|Properties|Paths|Libraries). If the output directory is not in the docpath of any library used by your project, the generated documentation may not display when you click the Doc tab in the AppBrowser.

Scope (Public, Protected, Package, and Private)

Instructs Javadoc to generate documentation for those classes, variables, methods of a specific visibility. Each visibility scope is cumulative and includes classes of the previous scope(s) as well. For example, Public includes only public API, and Private includes all.

Standard Options

Generate Hierarchy Tree: Generate a class hierarchy tree that includes all classes in all packages processed by the Javadoc. A Class Hierarchy page is generated for all packages, plus a hierarchy for each package. Each hierarchy page contains a list of classes and a list of interfaces. The classes are organized by inheritance structure starting with java.lang.Object. The interfaces do not inherit from java.lang.Object. When viewing the Overview page, clicking on "Tree" displays the hierarchy for all packages. When viewing a particular package, class or interface page, clicking "Tree" displays the hierarchy for only that package.

Generate Navigation Bar

Generate Index: Generate an alphabetic index file for all classes, interfaces, constructors, methods, and fields.

Separate Index Per Letter (generate separate index files per letter that contain an alphabetic list of all classes, interfaces, constructors, methods, and fields).

Use JDK 1.1 Format: Generate documentation files in Javadoc 1.1 format)

Advanced Options

Output page: This page collects the system output from the Javadoc utility.

REFERENCES:

1. http://java.sun.com/products/jdk/javadoc/
2. Help in Jbuilder3 (within the menu of Javadoc Wizard).

Appendix A. Sample Java Code for Demonstrating Javadoc

(see HTML.html for the resulting HTML Output from javadoc)

Notes: Use this as a template for your code documentation process, which already includes most key elements, e.g., version, date, author, disclaimer (legal purpose), etc. For all public methods, document accurately about the function and all parameters. For all public fields, describe their usages clearly. The public elements are the API exposed to other modules should be clearly and accurately described.

package com.zkey.utilities;

import java.io.*;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletException;

import java.lang.*;

/**

* @(#)HTML.java 1.00 00/02/28

* @author John Wang

*<P>

* The purpose of the utility package is to group common convenient utilities (not available in

* the standard JDK) for Zkey development.

*<P>

* Currently, only one static method is implemented for the HTML utility class--htmlWriter.

* A Simple HTML page generator, and send back to client's browser with header, title and body

* If an entire HTML file is used as input, the file is converted to a single String for the body

*<Pre>Usages:

*

* Call static htmlWriter() method to take the action with various arguments

*<HR>

*DISCLAIMER:

* Written by John Wang. (c)1999-2000 ZKey.com.

* Copyright 2000, SDN Online Incorporated. All rights reserved.

* US and foreign patents and trademarks pending.

* Confidential internal document.

* @version 1.0

*</Pre>

*/

public final class HTML {

/**

 * Don't let anyone instantiate this class.

 */

private HTML(){}

/**

 * No default (parameterless) method is possible, at least needs to know where to response

 * @param response HttpServletResponse Object to the browser

 * @return blank page

 */

 public static void htmlWriter(HttpServletResponse response)throws ServletException, IOException {

 htmlWriter(response, "", "A Default Blank Page", "");

 }

/**

 *Direct return a staic HTML file (including all anchored resources) to browser

 * @param response HttpServletResponse Object to the browser

 * @param fileLocation String of the file location for the forwarded html page

 */

 public static void htmlWriter(HttpServletResponse response, String fileLocation)

 throws ServletException, IOException{

 String body = getFileContent(fileLocation);

 htmlWriter(response, "", fileLocation, body);

 }

/**

 * Regular HTML generation method with three input parts: header, title, body

 * @param response HttpServletResponse Object to the browser

 * @return page according the combined result of header, title and body

 */

 public static void htmlWriter(HttpServletResponse response, String header, String title, String body)throws ServletException, IOException{

 PrintWriter out = new PrintWriter (response.getOutputStream());

 out.println("<html>");

 //Header section

 out.println("<head>");

 out.println(header);

 out.println("<title>"+title);

 out.println("</title></head>");

 //Body section

 out.println("<body>");

 out.println(body);

 out.println("</body></html>");

 out.flush();

 out.close();

 }

/**

 * Make sure no null String, always assigned with empty String even with null

 */

 String assign(String s){

 String x;

 if (s==null){

 x="";}

 else {

 x=s;}

 return x;

 }

/** Get the content of a file (Convert to a long String).

 * It does not work by direct putting arbitrary file length in byte (only in exact kBytes)

 * Note: you can not directly use byte[file.length]

 */

 public static String getFileContent(String fileLocation) {

 File pageName = new File(fileLocation);

 long n = pageName.length();

 int m = (int)Math.ceil(n/1024)*1024;

 byte[] buffer = new byte[m];

 try {

 InputStream fileIn = new FileInputStream(fileLocation);

 int bytesRead = fileIn.read(buffer);

 }

 catch (FileNotFoundException e) {

 System.out.println("FileNotFoundException");

 }

 catch (IOException e) {

 System.out.println("IOException at getFileContent");

 }

 String fileContent = new String(buffer);

 return fileContent;

 }

 }

