Naming and Coding Conventions for JAVA

John Wang 5/20/2000

Purpose: This naming convention is for developers in coding Java program. This naming convention should be followed unless there are special occasions such as to match names in database field or to HTML forms. This is simplified and tailored down from Javasoft (Go to http://java.sun.com/docs/codeconv/ for “Code Conventions for the Java Programming Language”) for Java developers in the Webvision.

The Java developer should use, whenever possible, names chosen according to the conventions presented here.

1. Package Names (such as com.webvision.projectName.modulus)

For packages immediately related to a modulus of company product, they should be named as:

com.webvision.projectName.modulus.***

Examples of modulus are like calendar, login, address etc. The subsequent names depend on the architecture of each modulus.

For packages not immediately related to company product such as for future development, they should be named as:

com.webvision.projectName.develop.project.***

Here project is the name of project in development. The subsequent names depend on the architecture of project.

2. Class and Interface Type Names (such as BufferedInputStream, Thread, DataInput and Runnable)
Names of class or interface should be descriptive nouns or noun phrases, not overly long, in mixed case with the first letter of each word capitalized. Examples are BufferedInputStream, Thread and interfaces

java.io.DataInput and java.io.DataOutput;

However, names of interface may be an adjective describing a behavior such as interfaces

java.lang.Runnable and java.lang.Cloneable.

Names of class or interface should avoid using those same as in JDK program or in Java IDE environment.

3. Method Names (such as getPriority and setPriority)
Method names should be verbs or verb phrases, in mixed case, with the first letter lowercase and the first letter of subsequent words capitalized.

Here are some additional specific conventions for method names (especially in Java Beans):

· Methods to get and set an attribute that might be thought of as a variable V should be named getV and setV. An example is the methods getPriority and setPriority of class java.lang.Thread.

· A method that returns the length of something should be named length, as in class java.lang.String.

· A method that tests a boolean condition V about an object should be named isV. An example is the method isInterrupted of class java.lang.Thread.

· A method that converts its object to a particular format F should be named toF. Examples are the method toString of class java.lang.Object and the methods toLocaleString and toGMTString of class java.util.Date.

Method names cannot hide or be hidden by other names.

4. Field Names (such as buf and bytesTransferred)
Fields should have names that are nouns, noun phrases, or abbreviations for nouns. Names of fields that are not final should be in mixed case with a lowercase first letter and the first letters of subsequent words capitalized. Note that well-designed Java classes have very few public or protected fields, except for fields that are constants (final static fields).

Examples of this convention are the fields buf, pos, and count of the class java.io.ByteArrayInputStream and the field bytesTransferred of the class java.io.InterruptedIOException.

Hiding involving field names is rare.

· If a field name hides a package name, then an import declaration can usually be used to make available the type names declared in that package.

· If a field name hides a type name, then a fully qualified name for the type can be used.

· Field names cannot hide method names.

· If a field name is hidden by a declaration of a parameter or local variable, then the name of the parameter or local variable can be changed without affecting other Java code.

5. Constant Names (such as PS_RUNNING and MAX_RADIX)
The names of constants in interface types should be all uppercase, with components separated by underscore "_" characters. Constant names should be descriptive and not unnecessarily abbreviated. Examples of names for constants include MIN_VALUE, MAX_VALUE, MIN_RADIX, and MAX_RADIX of the class java.lang.Character.

A group of constants that represent alternative values of a set, or, less frequently, masking bits in an integer value, are sometimes usefully specified with a common acronym as a name prefix, as in:

interface ProcessStates {

 int PS_RUNNING = 0;

 int PS_SUSPENDED = 1;

}

Hiding involving constant names is rare:

· Constant names should be longer than three letters, so that they do not hide the initial component of a unique package name.

· Constant names normally all captital, so they will not normally hide names of packages, types, or fields, whose names normally contain at least one lowercase letter.

· Constant names cannot hide method names, because they are distinguished syntactically.

6. Local Variable and Parameter Names (such as i, j, k for integers and buf holding a pointer to a buffer)

Local variable and parameter names should be short, yet meaningful. They are often short sequences of lowercase letters that are not words. For example:

· Acronyms, that is the first letter of a series of words, as in cp for a variable holding a reference to a ColoredPoint

· Abbreviations, as in buf holding a pointer to a buffer of some kind

· Mnemonic terms, organized in some way to aid memory and understanding, typically by using a set of local variables with conventional names patterned after the names of parameters to widely used classes. For example:

· in and out, whenever some kind of input and output are involved, patterned after the fields of java.lang.System

· off and len, whenever an offset and length are involved, patterned after the parameters to the read and write methods of the interfaces DataInput and DataOutput of java.io

One-character local variable or parameter names should be avoided, except for temporary and looping variables, or where a variable holds an undistinguished value of a type. Conventional one-character names are:

· b for a byte

· c for a char

· d for a double

· e for an Exception

· f for a float

· i, j, and k for integers

· l for a long

· o for an Object

· s for a String

· v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three uppercase letters should be avoided to avoid potential conflicts with the initial country codes and domain names that are the first component of unique package names.

Appendix C: Java Programming Guidelines
3

